Experiment set4IT055 for Cupriavidus basilensis FW507-4G11

Compare to:

LB

Group: lb
Media: LB
Culturing: cupriavidus_4G11_ML11, 24 deep-well microplate; Multitron, Aerobic, at 30 (C), shaken=750 rpm
Growth: about 5.6 generations
By: Mark on 5/13/2015
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: plate2 D6

Specific Phenotypes

For 18 genes in this experiment

SEED Subsystems

Subsystem #Specific
2-phosphoglycolate salvage 1
Biogenesis of c-type cytochromes 1
Carotenoids 1
Cobalt-zinc-cadmium resistance 1
DNA repair, bacterial 1
DNA repair, bacterial UvrD and related helicases 1
Homogentisate pathway of aromatic compound degradation 1
Iron acquisition in Vibrio 1
Oxidative stress 1
Periplasmic disulfide interchange 1
Phosphate metabolism 1
Phosphonate metabolism 1
Photorespiration (oxidative C2 cycle) 1
TCA Cycle 1
Transport of Iron 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
epoxysqualene biosynthesis 3 2 2
superoxide radicals degradation 2 2 1
methanol oxidation to formaldehyde IV 2 1 1
2-aminoethylphosphonate degradation II 2 1 1
neurosporene biosynthesis 5 2 2
partial TCA cycle (obligate autotrophs) 8 7 3
TCA cycle II (plants and fungi) 9 9 3
glyoxylate cycle 6 6 2
2-aminoethylphosphonate biosynthesis 3 3 1
ethanol degradation IV 3 3 1
TCA cycle V (2-oxoglutarate synthase) 9 8 3
TCA cycle IV (2-oxoglutarate decarboxylase) 9 7 3
TCA cycle VII (acetate-producers) 9 6 3
TCA cycle VI (Helicobacter) 9 6 3
2-aminoethylphosphonate degradation I 3 2 1
trans-lycopene biosynthesis I 6 2 2
TCA cycle III (animals) 10 10 3
TCA cycle I (prokaryotic) 10 9 3
reductive TCA cycle I 11 7 3
reactive oxygen species degradation 4 4 1
superpathway of glyoxylate bypass and TCA 12 11 3
nitrogen remobilization from senescing leaves 8 7 2
reductive TCA cycle II 12 6 3
trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria) 8 3 2
β-carotene biosynthesis (engineered) 8 2 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 3
2-methylcitrate cycle I 5 5 1
mixed acid fermentation 16 12 3
TCA cycle VIII (Chlamydia) 6 6 1
2-methylcitrate cycle II 6 5 1
methylaspartate cycle 19 14 3
incomplete reductive TCA cycle 7 4 1
pyruvate fermentation to propanoate I 7 3 1
lycopadiene biosynthesis 7 1 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 19 3
cholesterol biosynthesis I 16 2 2
cholesterol biosynthesis II (via 24,25-dihydrolanosterol) 16 2 2
cholesterol biosynthesis III (via desmosterol) 16 2 2
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 23 3
photorespiration III 9 6 1
photorespiration I 9 6 1
botryococcenes and methylated squalene biosynthesis 9 1 1
4,4'-diapolycopenedioate biosynthesis 9 1 1
staphyloxanthin biosynthesis 9 1 1
peptidoglycan recycling II 10 7 1
photorespiration II 10 6 1
anaerobic energy metabolism (invertebrates, mitochondrial) 10 5 1
L-glutamate degradation VIII (to propanoate) 11 3 1
superpathway of carotenoid biosynthesis in plants 22 3 2
ethene biosynthesis V (engineered) 25 17 2
(S)-lactate fermentation to propanoate, acetate and hydrogen 13 7 1
superpathway of ergosterol biosynthesis II 26 11 2
superpathway of ergosterol biosynthesis I 26 5 2
hopanoid biosynthesis (bacteria) 14 4 1
superpathway of anaerobic energy metabolism (invertebrates) 17 12 1
superpathway of cholesterol biosynthesis 38 5 2
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1