Experiment set1IT002 for Cupriavidus basilensis FW507-4G11

Compare to:

R2A with Cobalt chloride hexahydrate 0.5 mM

Group: stress
Media: R2A + Cobalt chloride hexahydrate (0.5 mM)
Culturing: cupriavidus_4G11_ML11, 48 well microplate; Tecan Infinite F200, Aerobic, at 25 (C), shaken=orbital
By: Mark on 03/03/2015
Media components: 0.5 g/L Bacto Peptone, 0.5 g/L casamino acids, 0.5 g/L Yeast Extract, 0.5 g/L D-Glucose, 0.5 g/L Starch, 0.3 g/L Potassium phosphate dibasic, 0.05 g/L Magnesium Sulfate Heptahydrate, 0.3 g/L Sodium pyruvate
Growth plate: 1173 B1,B2

Specific Phenotypes

For 20 genes in this experiment

For stress Cobalt chloride hexahydrate in Cupriavidus basilensis FW507-4G11

For stress Cobalt chloride hexahydrate across organisms

SEED Subsystems

Subsystem #Specific
Cobalt-zinc-cadmium resistance 2
HMG CoA Synthesis 1
Hydantoin metabolism 1
LMPTP YfkJ cluster 1
Leucine Degradation and HMG-CoA Metabolism 1
Ribosome biogenesis bacterial 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
pseudouridine degradation 2 1 1
linoleate biosynthesis II (animals) 2 1 1
glyoxylate cycle 6 6 2
3-methyl-branched fatty acid α-oxidation 6 3 2
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
nitrogen remobilization from senescing leaves 8 7 2
partial TCA cycle (obligate autotrophs) 8 7 2
phytol degradation 4 3 1
wax esters biosynthesis II 4 1 1
phosphatidylcholine acyl editing 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
TCA cycle II (plants and fungi) 9 9 2
TCA cycle V (2-oxoglutarate synthase) 9 8 2
TCA cycle IV (2-oxoglutarate decarboxylase) 9 7 2
TCA cycle VI (Helicobacter) 9 6 2
TCA cycle VII (acetate-producers) 9 6 2
sporopollenin precursors biosynthesis 18 8 4
TCA cycle III (animals) 10 10 2
2-methylcitrate cycle I 5 5 1
TCA cycle I (prokaryotic) 10 9 2
octane oxidation 5 4 1
creatinine degradation II 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
reductive TCA cycle I 11 7 2
superpathway of glyoxylate bypass and TCA 12 11 2
stearate biosynthesis II (bacteria and plants) 6 5 1
fatty acid salvage 6 5 1
2-methylcitrate cycle II 6 5 1
stearate biosynthesis IV 6 4 1
reductive TCA cycle II 12 6 2
6-gingerol analog biosynthesis (engineered) 6 3 1
stearate biosynthesis I (animals) 6 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
mixed acid fermentation 16 12 2
2-deoxy-D-ribose degradation II 8 5 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
methylaspartate cycle 19 14 2
suberin monomers biosynthesis 20 5 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 19 2
ethene biosynthesis V (engineered) 25 17 2
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 23 2
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 3 1
superpathway of fatty acids biosynthesis (E. coli) 53 50 2
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 29 1