Experiment set12IT059 for Cupriavidus basilensis FW507-4G11

Compare to:

Carbon source Phenylacetic acid 2.5 mM

Group: carbon source
Media: RCH2_defined_noCarbon + Phenylacetic acid (2.5 mM), pH=7
Culturing: cupriavidus_4G11_ML11, 24-well transparent microplate; Multitron, Aerobic, at 30 (C), shaken=700 rpm
By: Adam on 4-Aug-21
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 8 genes in this experiment

For carbon source Phenylacetic acid in Cupriavidus basilensis FW507-4G11

For carbon source Phenylacetic acid across organisms

SEED Subsystems

Subsystem #Specific
Polyhydroxybutyrate metabolism 3
Acetyl-CoA fermentation to Butyrate 2
Isoleucine degradation 2
Valine degradation 2
n-Phenylalkanoic acid degradation 2
Aromatic Amin Catabolism 1
Aromatic amino acid interconversions with aryl acids 1
Butanol Biosynthesis 1
Purine conversions 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
adenosine nucleotides degradation III 1 1 1
benzoyl-CoA biosynthesis 3 3 2
phenylacetate degradation I (aerobic) 9 7 4
adipate biosynthesis 5 5 2
adipate degradation 5 5 2
oleate β-oxidation 35 29 14
fatty acid β-oxidation II (plant peroxisome) 5 3 2
glutaryl-CoA degradation 5 3 2
superpathway of phenylethylamine degradation 11 9 4
pyruvate fermentation to hexanol (engineered) 11 7 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
2-methyl-branched fatty acid β-oxidation 14 10 5
ethanol degradation II 3 3 1
ethanol degradation IV 3 3 1
fatty acid salvage 6 5 2
valproate β-oxidation 9 6 3
L-isoleucine degradation I 6 4 2
propanoate fermentation to 2-methylbutanoate 6 4 2
pyruvate fermentation to butanol II (engineered) 6 4 2
ethanol degradation III 3 2 1
hypotaurine degradation 3 2 1
methyl ketone biosynthesis (engineered) 6 3 2
histamine degradation 3 1 1
benzoyl-CoA degradation I (aerobic) 7 6 2
fatty acid β-oxidation I (generic) 7 5 2
pyruvate fermentation to butanoate 7 4 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
L-valine degradation I 8 6 2
phytol degradation 4 3 1
L-tryptophan degradation X (mammalian, via tryptamine) 4 3 1
fatty acid α-oxidation I (plants) 4 2 1
putrescine degradation III 4 2 1
pyruvate fermentation to butanol I 8 3 2
phenylacetate degradation II (anaerobic) 4 1 1
penicillin G and penicillin V biosynthesis 4 1 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 6 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 2
mitochondrial NADPH production (yeast) 5 4 1
4-hydroxybenzoate biosynthesis III (plants) 5 4 1
octane oxidation 5 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 7 2
3-phenylpropanoate degradation 10 6 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 3 1
fatty acid β-oxidation IV (unsaturated, even number) 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
dopamine degradation 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
3-methyl-branched fatty acid α-oxidation 6 3 1
6-gingerol analog biosynthesis (engineered) 6 3 1
L-glutamate degradation VII (to butanoate) 12 4 2
alkane oxidation 6 1 1
noradrenaline and adrenaline degradation 13 8 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 7 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
serotonin degradation 7 4 1
ceramide degradation by α-oxidation 7 2 1
limonene degradation IV (anaerobic) 7 1 1
Spodoptera littoralis pheromone biosynthesis 22 4 3
L-tryptophan degradation III (eukaryotic) 15 10 2
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 7 1
glycerol degradation to butanol 16 9 2
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 6 2
aromatic biogenic amine degradation (bacteria) 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-methylpropene degradation 8 2 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 10 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 7 2
benzoyl-CoA degradation III (anaerobic) 9 6 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 6 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 10 2
toluene degradation VI (anaerobic) 18 5 2
methyl tert-butyl ether degradation 10 3 1
gallate degradation III (anaerobic) 11 5 1
androstenedione degradation I (aerobic) 25 16 2
platensimycin biosynthesis 26 7 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 18 2
androstenedione degradation II (anaerobic) 27 10 2
superpathway of testosterone and androsterone degradation 28 17 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 20 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 20 3
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 4 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 4 1
superpathway of cholesterol degradation III (oxidase) 49 12 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 17 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 7 1