Experiment set10IT078 for Cupriavidus basilensis FW507-4G11

Compare to:

Pimelic acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Pimelic acid (10 mM)
Culturing: cupriavidus_4G11_ML11_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 3.4 generations
By: Allie Pearson on 08/26/2019
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 22 genes in this experiment

For carbon source Pimelic acid in Cupriavidus basilensis FW507-4G11

For carbon source Pimelic acid across organisms

SEED Subsystems

Subsystem #Specific
ABC transporter branched-chain amino acid (TC 3.A.1.4.1) 5
Homogentisate pathway of aromatic compound degradation 3
Benzoate transport and degradation cluster 1
D-ribose utilization 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
linoleate biosynthesis II (animals) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
3-methyl-branched fatty acid α-oxidation 6 3 2
alkane biosynthesis II 3 1 1
oleate biosynthesis I (plants) 3 1 1
phytol degradation 4 3 1
long chain fatty acid ester synthesis (engineered) 4 1 1
phosphatidylcholine acyl editing 4 1 1
wax esters biosynthesis II 4 1 1
sporopollenin precursors biosynthesis 18 8 4
octane oxidation 5 4 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
stearate biosynthesis II (bacteria and plants) 6 5 1
fatty acid salvage 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
methylthiopropanoate degradation I (cleavage) 6 2 1
stearate biosynthesis I (animals) 6 2 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
superpathway of dimethylsulfoniopropanoate degradation 8 2 1
suberin monomers biosynthesis 20 5 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 3 1
superpathway of fatty acids biosynthesis (E. coli) 53 50 2
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 29 1