Experiment set10IT077 for Cupriavidus basilensis FW507-4G11

Compare to:

Sodium adipate carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Sodium adipate (10 mM)
Culturing: cupriavidus_4G11_ML11_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 3.2 generations
By: Allie Pearson on 08/26/2019
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 48 genes in this experiment

For carbon source Sodium adipate in Cupriavidus basilensis FW507-4G11

For carbon source Sodium adipate across organisms

SEED Subsystems

Subsystem #Specific
ABC transporter branched-chain amino acid (TC 3.A.1.4.1) 5
Benzoate transport and degradation cluster 4
Homogentisate pathway of aromatic compound degradation 4
Isoleucine degradation 3
Protocatechuate branch of beta-ketoadipate pathway 3
Valine degradation 3
Acetyl-CoA fermentation to Butyrate 2
Butanol Biosynthesis 2
HMG CoA Synthesis 2
Leucine Degradation and HMG-CoA Metabolism 2
Serine-glyoxylate cycle 2
Anaerobic respiratory reductases 1
Biotin biosynthesis 1
Catechol branch of beta-ketoadipate pathway 1
Chloroaromatic degradation pathway 1
D-ribose utilization 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Polyhydroxybutyrate metabolism 1
Ribosome activity modulation 1
Trehalose Biosynthesis 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
citrate degradation 2 2 2
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
adipate degradation 5 5 4
benzoyl-CoA biosynthesis 3 3 2
adipate biosynthesis 5 5 3
fatty acid β-oxidation IV (unsaturated, even number) 5 3 3
fatty acid β-oxidation I (generic) 7 5 4
oleate β-oxidation 35 29 19
trehalose biosynthesis I 2 2 1
3-oxoadipate degradation 2 2 1
fatty acid salvage 6 5 3
pyruvate fermentation to butanol II (engineered) 6 4 3
oleate β-oxidation (thioesterase-dependent, yeast) 2 1 1
pyruvate fermentation to hexanol (engineered) 11 7 5
2-methyl-branched fatty acid β-oxidation 14 10 6
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 2 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
valproate β-oxidation 9 6 3
propanoate fermentation to 2-methylbutanoate 6 4 2
L-isoleucine degradation I 6 4 2
methyl ketone biosynthesis (engineered) 6 3 2
oxalate degradation II 3 1 1
4-aminobutanoate degradation IV 3 1 1
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
benzoyl-CoA degradation I (aerobic) 7 6 2
pyruvate fermentation to butanoate 7 4 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
biotin biosynthesis from 8-amino-7-oxononanoate I 4 4 1
L-valine degradation I 8 6 2
pyruvate fermentation to butanol I 8 3 2
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
phenylacetate degradation I (aerobic) 9 7 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 6 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 2
chorismate biosynthesis from 3-dehydroquinate 5 5 1
4-hydroxybenzoate biosynthesis III (plants) 5 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 7 2
3-phenylpropanoate degradation 10 6 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
L-lysine degradation IV 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
superpathway of phenylethylamine degradation 11 9 2
catechol degradation III (ortho-cleavage pathway) 6 6 1
L-leucine degradation I 6 5 1
L-lysine degradation X 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
L-glutamate degradation VII (to butanoate) 12 4 2
methylthiopropanoate degradation I (cleavage) 6 2 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 7 2
chorismate biosynthesis I 7 7 1
superpathway of salicylate degradation 7 7 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
4-methylcatechol degradation (ortho cleavage) 7 5 1
Spodoptera littoralis pheromone biosynthesis 22 4 3
L-tryptophan degradation III (eukaryotic) 15 10 2
glycerol degradation to butanol 16 9 2
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 6 2
2-methylpropene degradation 8 2 1
superpathway of dimethylsulfoniopropanoate degradation 8 2 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 10 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 7 2
aromatic compounds degradation via β-ketoadipate 9 9 1
1-butanol autotrophic biosynthesis (engineered) 27 18 3
3-hydroxypropanoate/4-hydroxybutanate cycle 18 10 2
cis-geranyl-CoA degradation 9 4 1
toluene degradation VI (anaerobic) 18 5 2
superpathway of L-tyrosine biosynthesis 10 10 1
superpathway of L-phenylalanine biosynthesis 10 10 1
methyl tert-butyl ether degradation 10 3 1
toluene degradation III (aerobic) (via p-cresol) 11 7 1
gallate degradation III (anaerobic) 11 5 1
chorismate biosynthesis II (archaea) 12 8 1
reductive TCA cycle II 12 6 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
androstenedione degradation I (aerobic) 25 16 2
superpathway of L-tryptophan biosynthesis 13 13 1
platensimycin biosynthesis 26 7 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 10 2
superpathway of testosterone and androsterone degradation 28 17 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 20 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
biotin biosynthesis I 15 13 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 20 3
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 4 1
superpathway of aromatic amino acid biosynthesis 18 18 1
mandelate degradation to acetyl-CoA 18 15 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 4 1
superpathway of cholesterol degradation III (oxidase) 49 12 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 17 1
superpathway of aerobic toluene degradation 30 19 1
superpathway of aromatic compound degradation via 3-oxoadipate 35 25 1
superpathway of L-lysine degradation 43 12 1
superpathway of chorismate metabolism 59 45 1