Experiment set10IT057 for Cupriavidus basilensis FW507-4G11

Compare to:

Sodium adipate carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Sodium adipate (10 mM)
Culturing: cupriavidus_4G11_ML11_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 3.2 generations
By: Allie Pearson on 08/26/2019
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 36 genes in this experiment

For carbon source Sodium adipate in Cupriavidus basilensis FW507-4G11

For carbon source Sodium adipate across organisms

SEED Subsystems

Subsystem #Specific
ABC transporter branched-chain amino acid (TC 3.A.1.4.1) 4
Homogentisate pathway of aromatic compound degradation 4
Isoleucine degradation 3
Valine degradation 3
Acetyl-CoA fermentation to Butyrate 2
Benzoate transport and degradation cluster 2
Butanol Biosynthesis 2
HMG CoA Synthesis 2
Leucine Degradation and HMG-CoA Metabolism 2
Protocatechuate branch of beta-ketoadipate pathway 2
Anaerobic respiratory reductases 1
Catechol branch of beta-ketoadipate pathway 1
Chloroaromatic degradation pathway 1
D-ribose utilization 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Polyhydroxybutyrate metabolism 1
Ribosome activity modulation 1
Serine-glyoxylate cycle 1
Trehalose Biosynthesis 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
citrate degradation 2 2 2
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
long-chain fatty acid activation 1 1 1
adipate degradation 5 5 4
benzoyl-CoA biosynthesis 3 3 2
fatty acid salvage 6 5 4
adipate biosynthesis 5 5 3
fatty acid β-oxidation IV (unsaturated, even number) 5 3 3
oleate β-oxidation 35 29 20
fatty acid β-oxidation I (generic) 7 5 4
3-oxoadipate degradation 2 2 1
trehalose biosynthesis I 2 2 1
pyruvate fermentation to butanol II (engineered) 6 4 3
oleate β-oxidation (thioesterase-dependent, yeast) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
pyruvate fermentation to hexanol (engineered) 11 7 5
2-methyl-branched fatty acid β-oxidation 14 10 6
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 2 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
valproate β-oxidation 9 6 3
L-isoleucine degradation I 6 4 2
propanoate fermentation to 2-methylbutanoate 6 4 2
6-gingerol analog biosynthesis (engineered) 6 3 2
3-methyl-branched fatty acid α-oxidation 6 3 2
methyl ketone biosynthesis (engineered) 6 3 2
alkane biosynthesis II 3 1 1
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
oxalate degradation II 3 1 1
oleate biosynthesis I (plants) 3 1 1
benzoyl-CoA degradation I (aerobic) 7 6 2
pyruvate fermentation to butanoate 7 4 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
L-valine degradation I 8 6 2
phytol degradation 4 3 1
pyruvate fermentation to butanol I 8 3 2
long chain fatty acid ester synthesis (engineered) 4 1 1
wax esters biosynthesis II 4 1 1
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
phosphatidylcholine acyl editing 4 1 1
phenylacetate degradation I (aerobic) 9 7 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 6 2
sporopollenin precursors biosynthesis 18 8 4
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 2
4-hydroxybenzoate biosynthesis III (plants) 5 4 1
octane oxidation 5 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 7 2
3-phenylpropanoate degradation 10 6 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
L-lysine degradation IV 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
superpathway of phenylethylamine degradation 11 9 2
catechol degradation III (ortho-cleavage pathway) 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
L-leucine degradation I 6 5 1
stearate biosynthesis IV 6 4 1
L-lysine degradation X 6 4 1
L-glutamate degradation VII (to butanoate) 12 4 2
stearate biosynthesis I (animals) 6 2 1
methylthiopropanoate degradation I (cleavage) 6 2 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 7 2
superpathway of salicylate degradation 7 7 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
4-methylcatechol degradation (ortho cleavage) 7 5 1
ceramide degradation by α-oxidation 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
Spodoptera littoralis pheromone biosynthesis 22 4 3
L-tryptophan degradation III (eukaryotic) 15 10 2
2-deoxy-D-ribose degradation II 8 5 1
glycerol degradation to butanol 16 9 2
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 6 2
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
superpathway of dimethylsulfoniopropanoate degradation 8 2 1
2-methylpropene degradation 8 2 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 10 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 7 2
aromatic compounds degradation via β-ketoadipate 9 9 1
1-butanol autotrophic biosynthesis (engineered) 27 18 3
3-hydroxypropanoate/4-hydroxybutanate cycle 18 10 2
cis-geranyl-CoA degradation 9 4 1
toluene degradation VI (anaerobic) 18 5 2
methyl tert-butyl ether degradation 10 3 1
suberin monomers biosynthesis 20 5 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
toluene degradation III (aerobic) (via p-cresol) 11 7 1
gallate degradation III (anaerobic) 11 5 1
reductive TCA cycle II 12 6 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
androstenedione degradation I (aerobic) 25 16 2
platensimycin biosynthesis 26 7 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 10 2
superpathway of testosterone and androsterone degradation 28 17 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 20 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 20 3
cutin biosynthesis 16 3 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 4 1
mandelate degradation to acetyl-CoA 18 15 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 4 1
superpathway of cholesterol degradation III (oxidase) 49 12 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 17 1
superpathway of fatty acids biosynthesis (E. coli) 53 50 2
palmitate biosynthesis III 29 21 1
superpathway of aerobic toluene degradation 30 19 1
superpathway of aromatic compound degradation via 3-oxoadipate 35 25 1
superpathway of L-lysine degradation 43 12 1