MetaCyc Pathway: mixed acid fermentation in Shewanella loihica PV-4

Add experiment(s):


Phosphoenolpyruvate carboxylase (in reverse):
phosphoenolpyruvate + hydrogen carbonate→oxaloacetate + phosphate
(EC 4.1.1.31)
Shew_0200
Pyruvate kinase (in reverse):
phosphoenolpyruvate + ADP + H+→pyruvate + ATP
(EC 2.7.1.40)
Shew_2050
D-lactate dehydrogenase (in reverse):
pyruvate + NADH + H+→(R)-lactate + NAD+
(EC 1.1.1.28)
Shew_0787
Malate dehydrogenase (in reverse):
oxaloacetate + NADH + H+→(S)-malate + NAD+
(EC 1.1.1.37; 1.1.1.38)
Shew_0867
Shew_2962
Formate C-acetyltransferase (in reverse):
pyruvate + coenzyme A→acetyl-CoA + formate
(EC 2.3.1.54)
Shew_2390
Shew_2391 (pflA)
Acetaldehyde dehydrogenase (acetylating) (in reverse):
acetyl-CoA + NADH + H+→acetaldehyde + coenzyme A + NAD+
(EC 1.2.1.10)
Shew_1910
Citrate (Si)-synthase:
acetyl-CoA + oxaloacetate + H2O→citrate + coenzyme A + H+
(EC 2.3.3.1; 2.3.3.16; 2.3.3.3)
Shew_1650 (gltA)
formate + H+→CO2 + H2
No genes
Fumarate hydratase:
(S)-malate→fumarate + H2O
(EC 4.2.1.2)
Shew_0068
Shew_1904
Phosphate acetyltransferase:
acetyl-CoA + phosphate→acetyl phosphate + coenzyme A
(EC 2.3.1.8)
Shew_2394
Acetate kinase (in reverse):
acetyl phosphate + ADP→acetate + ATP
(EC 2.7.2.1; 2.7.2.15)
Shew_2393
Aconitate hydratase:
citrate→cis-aconitate + H2O
(EC 4.2.1.3)
Shew_1822
Shew_3424
Alcohol dehydrogenase (in reverse):
acetaldehyde + NADH + H+→ethanol + NAD+
(EC 1.1.1.1)
Shew_1166
Shew_1540
Shew_1857
Shew_1910
Shew_3048
Shew_3572
Succinate dehydrogenase (ubiquinone):
fumarate[in] + a menaquinol→succinate[in] + a menaquinone
(EC 1.3.5.1)
Shew_0332
Shew_0333
Shew_0335 (sdhB)
Aconitate hydratase:
cis-aconitate + H2O→D-threo-isocitrate
(EC 4.2.1.3)
Shew_1822
Shew_3424
Isocitrate dehydrogenase (NADP(+)):
D-threo-isocitrate + NADP+→CO2 + 2-oxoglutarate + NADPH
(EC 1.1.1.42)
Shew_1563

Links:

Candidate genes for each reaction are identified from best hits to MetaCyc; by matching EC numbers (which are assigned by TIGRFam, SEED, or best hits to KEGG); or by matching SEED roles to KEGG reactions to MetaCyc reactions. See the "Protein" tab of each gene for more information