Experiment set9S342 for Enterobacter sp. TBS_079

Compare to:

L-Serine carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + L-Serine (10 mM)
Culturing: Enterobacter_TBS_079_ML3, microplate, Aerobic, at 30 (C)
By: Robin on 6/19/24
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 6 genes in this experiment

For carbon source L-Serine in Enterobacter sp. TBS_079

For carbon source L-Serine across organisms

SEED Subsystems

Subsystem #Specific
Glycine and Serine Utilization 4
Glycine cleavage system 2
Photorespiration (oxidative C2 cycle) 2
Pyruvate Alanine Serine Interconversions 2
Glycolysis and Gluconeogenesis 1
Glycolysis and Gluconeogenesis, including Archaeal enzymes 1
Pyruvate metabolism I: anaplerotic reactions, PEP 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
D-serine degradation 3 3 3
L-serine degradation 3 3 3
L-cysteine degradation II 3 3 2
glycine biosynthesis II 3 3 2
glycine degradation 3 3 2
glycine cleavage 3 3 2
L-tryptophan degradation II (via pyruvate) 3 2 2
glycine betaine degradation III 7 4 3
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis 5 2 2
glycine betaine degradation I 8 4 3
L-methionine biosynthesis II 6 5 2
L-mimosine degradation 8 4 2
glutathione-mediated detoxification I 8 3 2
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 13 2
purine nucleobases degradation II (anaerobic) 24 13 3
folate transformations III (E. coli) 9 9 1
reductive glycine pathway of autotrophic CO2 fixation 9 6 1
photorespiration I 9 5 1
photorespiration III 9 5 1
glycolysis V (Pyrococcus) 10 7 1
photorespiration II 10 6 1
glycolysis II (from fructose 6-phosphate) 11 11 1
folate transformations II (plants) 11 10 1
glycolysis I (from glucose 6-phosphate) 13 13 1
gluconeogenesis I 13 13 1
folate transformations I 13 9 1
superpathway of glycolysis and the Entner-Doudoroff pathway 17 17 1
superpathway of hexitol degradation (bacteria) 18 16 1
gluconeogenesis II (Methanobacterium thermoautotrophicum) 18 9 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 18 1
superpathway of anaerobic sucrose degradation 19 17 1
superpathway of N-acetylneuraminate degradation 22 19 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 25 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 22 1