Experiment set9S340 for Enterobacter sp. TBS_079

Compare to:

L-Aspartic Acid carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + L-Aspartic Acid (10 mM)
Culturing: Enterobacter_TBS_079_ML3, microplate, Aerobic, at 30 (C)
By: Robin on 6/19/24
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 10 genes in this experiment

For carbon source L-Aspartic Acid in Enterobacter sp. TBS_079

For carbon source L-Aspartic Acid across organisms

SEED Subsystems

Subsystem #Specific
D-allose utilization 1
Fermentations: Mixed acid 1
Glutathione: Biosynthesis and gamma-glutamyl cycle 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Histidine Degradation 1
Homogentisate pathway of aromatic compound degradation 1
Pyruvate metabolism I: anaplerotic reactions, PEP 1
Utilization of glutathione as a sulphur source 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
acetaldehyde biosynthesis I 1 1 1
glutathione degradation (DUG pathway) 2 2 1
pyruvate fermentation to ethanol II 2 2 1
ethanol degradation I 2 2 1
pyruvate fermentation to ethanol III 3 3 1
ethanol degradation II 3 3 1
pyruvate fermentation to ethanol I 3 3 1
L-leucine degradation III 3 2 1
L-isoleucine degradation II 3 2 1
L-valine degradation II 3 2 1
L-methionine degradation III 3 2 1
phytol degradation 4 3 1
L-tyrosine degradation III 4 2 1
L-phenylalanine degradation III 4 2 1
salidroside biosynthesis 4 2 1
cytidine-5'-diphosphate-glycerol biosynthesis 4 1 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
acetylene degradation (anaerobic) 5 4 1
ethanolamine utilization 5 4 1
(S)-propane-1,2-diol degradation 5 3 1
phenylethanol biosynthesis 5 2 1
peptido-conjugates in tissue regeneration biosynthesis 17 5 3
γ-glutamyl cycle 6 5 1
leukotriene biosynthesis 6 1 1
noradrenaline and adrenaline degradation 13 4 2
3-methylbutanol biosynthesis (engineered) 7 6 1
serotonin degradation 7 3 1
butanol and isobutanol biosynthesis (engineered) 8 3 1
superpathway of fermentation (Chlamydomonas reinhardtii) 9 9 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 1
L-tryptophan degradation V (side chain pathway) 13 1 1
hypoglycin biosynthesis 14 4 1
mixed acid fermentation 16 16 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 1
heterolactic fermentation 18 15 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 18 1
superpathway of anaerobic sucrose degradation 19 17 1
superpathway of N-acetylneuraminate degradation 22 19 1