Experiment set9IT071 for Sinorhizobium meliloti 1021

Compare to:

L-Lysine carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + L-Lysine (10 mM)
Culturing: Smeli_ML6_JBEI, 24 deep-well microplate; Multitron, Aerobic, at 30 (C), shaken=200 rpm
By: Catharine Adams on 11/8/20
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 20 genes in this experiment

For carbon source L-Lysine in Sinorhizobium meliloti 1021

For carbon source L-Lysine across organisms

SEED Subsystems

Subsystem #Specific
CO2 uptake, carboxysome 3
Calvin-Benson cycle 3
ABC transporter branched-chain amino acid (TC 3.A.1.4.1) 2
Carboxysome 2
Photorespiration (oxidative C2 cycle) 2
Serine-glyoxylate cycle 2
Acetyl-CoA fermentation to Butyrate 1
Archaeal lipids 1
Butanol Biosynthesis 1
Cysteine Biosynthesis 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Isoprenoid Biosynthesis 1
MLST 1
Pentose phosphate pathway 1
Polyhydroxybutyrate metabolism 1
Threonine and Homoserine Biosynthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-aspartate degradation I 1 1 1
L-aspartate biosynthesis 1 1 1
3-(4-hydroxyphenyl)pyruvate biosynthesis 1 1 1
pentose phosphate pathway (partial) 3 3 2
acetoacetate degradation (to acetyl CoA) 2 2 1
malate/L-aspartate shuttle pathway 2 2 1
atromentin biosynthesis 2 1 1
L-tyrosine degradation II 2 1 1
L-glutamate degradation II 2 1 1
L-tryptophan degradation IV (via indole-3-lactate) 2 1 1
pentose phosphate pathway (non-oxidative branch) I 5 5 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
benzoyl-CoA biosynthesis 3 3 1
L-phenylalanine biosynthesis I 3 3 1
polyhydroxybutanoate biosynthesis 3 3 1
L-tyrosine biosynthesis I 3 3 1
pentose phosphate pathway (non-oxidative branch) II 6 5 2
ketolysis 3 2 1
L-phenylalanine degradation II (anaerobic) 3 2 1
indole-3-acetate biosynthesis VI (bacteria) 3 1 1
(R)-cysteate degradation 3 1 1
sulfolactate degradation III 3 1 1
L-asparagine degradation III (mammalian) 3 1 1
molybdenum cofactor biosynthesis 3 1 1
L-tyrosine degradation IV (to 4-methylphenol) 3 1 1
Rubisco shunt 10 10 3
pentose phosphate pathway 8 8 2
(2S)-ethylmalonyl-CoA biosynthesis 4 3 1
L-phenylalanine degradation III 4 2 1
L-tyrosine degradation III 4 2 1
L-tryptophan degradation VIII (to tryptophol) 4 1 1
superpathway of L-aspartate and L-asparagine biosynthesis 4 1 1
Calvin-Benson-Bassham cycle 13 12 3
oleate β-oxidation 35 29 8
formaldehyde assimilation II (assimilatory RuMP Cycle) 9 7 2
valproate β-oxidation 9 5 2
2-methyl-branched fatty acid β-oxidation 14 9 3
L-tyrosine degradation I 5 5 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 1
glutaryl-CoA degradation 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
trans-4-hydroxy-L-proline degradation I 5 3 1
ketogenesis 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
superpathway of plastoquinol biosynthesis 5 2 1
pyruvate fermentation to acetone 5 2 1
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
L-lysine degradation XI 5 2 1
isopropanol biosynthesis (engineered) 5 1 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 1 1
L-phenylalanine degradation VI (reductive Stickland reaction) 5 1 1
L-tyrosine degradation V (reductive Stickland reaction) 5 1 1
L-tryptophan degradation XIII (reductive Stickland reaction) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 7 2
pyruvate fermentation to hexanol (engineered) 11 7 2
oxygenic photosynthesis 17 13 3
TCA cycle VIII (Chlamydia) 6 6 1
superpathway of L-threonine biosynthesis 6 6 1
glyoxylate cycle 6 6 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 11 2
fatty acid salvage 6 5 1
L-isoleucine degradation I 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
superpathway of sulfolactate degradation 6 3 1
4-ethylphenol degradation (anaerobic) 6 2 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
coenzyme M biosynthesis II 6 1 1
jasmonic acid biosynthesis 19 4 3
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 22 4
1-butanol autotrophic biosynthesis (engineered) 27 21 4
superpathway of glyoxylate cycle and fatty acid degradation 14 12 2
acetyl-CoA fermentation to butanoate 7 6 1
anaerobic energy metabolism (invertebrates, cytosol) 7 5 1
fatty acid β-oxidation I (generic) 7 5 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 8 2
pyruvate fermentation to butanoate 7 3 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
pyruvate fermentation to butanol I 8 4 1
2-deoxy-D-ribose degradation II 8 3 1
2-methylpropene degradation 8 2 1
mevalonate pathway IV (archaea) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
ethene biosynthesis V (engineered) 25 19 3
androstenedione degradation I (aerobic) 25 6 3
superpathway of glucose and xylose degradation 17 15 2
superpathway of aromatic amino acid biosynthesis 18 18 2
photorespiration III 9 8 1
photorespiration I 9 8 1
superpathway of L-methionine biosynthesis (transsulfuration) 9 7 1
L-lysine degradation V 9 5 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
L-lysine degradation II (L-pipecolate pathway) 9 4 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 4 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
4-oxopentanoate degradation 9 2 1
L-lysine biosynthesis IV 9 2 1
superpathway of testosterone and androsterone degradation 28 6 3
superpathway of L-phenylalanine biosynthesis 10 10 1
superpathway of L-tyrosine biosynthesis 10 10 1
photorespiration II 10 8 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
3-phenylpropanoate degradation 10 4 1
nucleoside and nucleotide degradation (archaea) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
rosmarinic acid biosynthesis I 10 2 1
methyl tert-butyl ether degradation 10 2 1
L-lysine biosynthesis V 10 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 4 1
(S)-reticuline biosynthesis I 11 3 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 4
superpathway of glyoxylate bypass and TCA 12 11 1
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 11 1
indole-3-acetate biosynthesis II 12 5 1
L-glutamate degradation VII (to butanoate) 12 4 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
superpathway of L-isoleucine biosynthesis I 13 13 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 4 2
superpathway of rosmarinic acid biosynthesis 14 3 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
Bifidobacterium shunt 15 14 1
L-tryptophan degradation III (eukaryotic) 15 3 1
glycerol degradation to butanol 16 12 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 1
superpathway of anaerobic energy metabolism (invertebrates) 17 12 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 10 1
toluene degradation VI (anaerobic) 18 3 1
sitosterol degradation to androstenedione 18 1 1
superpathway of L-lysine degradation 43 15 2
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
aspartate superpathway 25 23 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 22 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 3 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 20 2
superpathway of chorismate metabolism 59 38 2
superpathway of cholesterol biosynthesis 38 3 1