Experiment set9IT064 for Sinorhizobium meliloti 1021

Compare to:

Myristic acid carbon source

Group: carbon source
Media: RCH2_defined_noCarbon + Myristic acid (10 mM)
Culturing: Smeli_ML6_JBEI, 24 deep-well microplate; Multitron, Aerobic, at 30 (C), shaken=200 rpm
By: Catharine Adams on 11/8/20
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 22 genes in this experiment

For carbon source Myristic acid in Sinorhizobium meliloti 1021

For carbon source Myristic acid across organisms

SEED Subsystems

Subsystem #Specific
Serine-glyoxylate cycle 3
Multidrug Resistance, Tripartite Systems Found in Gram Negative Bacteria 2
Acetyl-CoA fermentation to Butyrate 1
Archaeal lipids 1
Bacterial Chemotaxis 1
Biotin biosynthesis 1
Butanol Biosynthesis 1
Isoprenoid Biosynthesis 1
MLST 1
Polyhydroxybutyrate metabolism 1
Propionyl-CoA to Succinyl-CoA Module 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
acetoacetate degradation (to acetyl CoA) 2 2 1
fatty acid salvage 6 5 3
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
oleate β-oxidation 35 29 12
propanoyl CoA degradation I 3 3 1
polyhydroxybutanoate biosynthesis 3 3 1
benzoyl-CoA biosynthesis 3 3 1
ketolysis 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
alkane biosynthesis II 3 1 1
oleate biosynthesis I (plants) 3 1 1
conversion of succinate to propanoate 3 1 1
2-methyl-branched fatty acid β-oxidation 14 9 4
phytol degradation 4 3 1
(2S)-ethylmalonyl-CoA biosynthesis 4 3 1
2-oxobutanoate degradation I 4 3 1
2-deoxy-D-ribose degradation II 8 3 2
long chain fatty acid ester synthesis (engineered) 4 1 1
wax esters biosynthesis II 4 1 1
phosphatidylcholine acyl editing 4 1 1
valproate β-oxidation 9 5 2
sporopollenin precursors biosynthesis 18 4 4
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 1
adipate degradation 5 5 1
glutaryl-CoA degradation 5 3 1
ketogenesis 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
octane oxidation 5 2 1
pyruvate fermentation to acetone 5 2 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
glyoxylate cycle 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
pyruvate fermentation to butanol II (engineered) 6 4 1
L-isoleucine degradation I 6 4 1
stearate biosynthesis IV 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
4-ethylphenol degradation (anaerobic) 6 2 1
6-gingerol analog biosynthesis (engineered) 6 2 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
stearate biosynthesis I (animals) 6 1 1
jasmonic acid biosynthesis 19 4 3
superpathway of glyoxylate cycle and fatty acid degradation 14 12 2
acetyl-CoA fermentation to butanoate 7 6 1
fatty acid β-oxidation I (generic) 7 5 1
pyruvate fermentation to propanoate I 7 4 1
pyruvate fermentation to butanoate 7 3 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
ceramide degradation by α-oxidation 7 2 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
pyruvate fermentation to butanol I 8 4 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-methylpropene degradation 8 2 1
mevalonate pathway III (Thermoplasma) 8 1 1
mevalonate pathway IV (archaea) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
androstenedione degradation I (aerobic) 25 6 3
3-hydroxypropanoate/4-hydroxybutanate cycle 18 10 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
4-oxopentanoate degradation 9 2 1
superpathway of testosterone and androsterone degradation 28 6 3
anaerobic energy metabolism (invertebrates, mitochondrial) 10 7 1
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
3-phenylpropanoate degradation 10 4 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
methyl tert-butyl ether degradation 10 2 1
suberin monomers biosynthesis 20 2 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 4
superpathway of fatty acid biosynthesis II (plant) 43 38 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 1
ethylmalonyl-CoA pathway 11 4 1
L-glutamate degradation VIII (to propanoate) 11 4 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 4
superpathway of glyoxylate bypass and TCA 12 11 1
L-glutamate degradation VII (to butanoate) 12 4 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
3-hydroxypropanoate cycle 13 7 1
(S)-lactate fermentation to propanoate, acetate and hydrogen 13 7 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 4 2
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered) 14 3 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 3 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
glycerol degradation to butanol 16 12 1
superpathway of L-methionine salvage and degradation 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 1
cutin biosynthesis 16 1 1
superpathway of anaerobic energy metabolism (invertebrates) 17 12 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
superpathway of the 3-hydroxypropanoate cycle 18 7 1
toluene degradation VI (anaerobic) 18 3 1
sitosterol degradation to androstenedione 18 1 1
methylaspartate cycle 19 12 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 22 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 22 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 3 1
superpathway of fatty acids biosynthesis (E. coli) 53 49 2
1-butanol autotrophic biosynthesis (engineered) 27 21 1
palmitate biosynthesis III 29 28 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 15 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 20 1