Experiment set9IT043 for Bacteroides thetaiotaomicron VPI-5482

Compare to:

BHIS with Trimethoprim 0.00625 mM

Group: stress
Media: BHIS + Trimethoprim (0.00625 mM) + Dimethyl Sulfoxide (0.0625 vol%)
Culturing: Btheta_ML6a, 96 deep-well microplate; 1.2 mL volume, Anaerobic, at 37 (C), shaken=0 rpm
By: Hans on 6/18/18
Media components: 7.7 g/L Calf brains, 9.8 g/L Beef heart, 10 g/L Proteose Peptone, 5 g/L Sodium Chloride, 2.5 g/L Disodium phosphate, 1 g/L L-Cysteine, 2 g/L Sodium bicarbonate, 0.005 g/L Hemin

Specific Phenotypes

For 13 genes in this experiment

For stress Trimethoprim in Bacteroides thetaiotaomicron VPI-5482

For stress Trimethoprim across organisms

SEED Subsystems

Subsystem #Specific
Butanol Biosynthesis 1
De Novo Purine Biosynthesis 1
Fermentations: Mixed acid 1
Folate Biosynthesis 1
Glycine and Serine Utilization 1
One-carbon metabolism by tetrahydropterines 1
Purine Utilization 1
Pyruvate Alanine Serine Interconversions 1
Ribosome biogenesis bacterial 1
Serine-glyoxylate cycle 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-serine degradation 3 3 3
formate assimilation into 5,10-methylenetetrahydrofolate 3 3 2
L-tryptophan degradation II (via pyruvate) 3 3 2
L-cysteine degradation II 3 2 2
D-serine degradation 3 2 2
tetrahydrofolate salvage from 5,10-methenyltetrahydrofolate 2 2 1
reductive monocarboxylic acid cycle 2 2 1
phenylmercury acetate degradation 2 1 1
glycine betaine degradation III 7 4 3
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis 5 2 2
glycine betaine degradation I 8 4 3
pyruvate fermentation to acetate IV 3 3 1
glycine cleavage 3 3 1
glycine biosynthesis II 3 3 1
pyruvate decarboxylation to acetyl CoA I 3 2 1
pyruvate fermentation to ethanol I 3 2 1
glycine degradation 3 2 1
2-oxoisovalerate decarboxylation to isobutanoyl-CoA 3 2 1
2-oxoglutarate decarboxylation to succinyl-CoA 3 2 1
L-methionine biosynthesis II 6 3 2
formaldehyde oxidation VII (THF pathway) 4 4 1
L-mimosine degradation 8 4 2
glutathione-mediated detoxification I 8 2 2
reductive glycine pathway of autotrophic CO2 fixation 9 6 2
5-aminoimidazole ribonucleotide biosynthesis I 5 5 1
5-aminoimidazole ribonucleotide biosynthesis II 5 5 1
folate polyglutamylation 5 5 1
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria) 10 3 2
folate transformations II (plants) 11 8 2
L-histidine degradation III 6 6 1
superpathway of 5-aminoimidazole ribonucleotide biosynthesis 6 6 1
L-threonine degradation I 6 5 1
purine nucleobases degradation II (anaerobic) 24 12 4
folate transformations I 13 8 2
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 12 2
superpathway of fermentation (Chlamydomonas reinhardtii) 9 7 1
folate transformations III (E. coli) 9 7 1
superpathway of tetrahydrofolate biosynthesis and salvage 12 10 1
(S)-lactate fermentation to propanoate, acetate and hydrogen 13 10 1
purine nucleobases degradation I (anaerobic) 15 5 1
mixed acid fermentation 16 12 1
superpathway of L-threonine metabolism 18 13 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of purine nucleotides de novo biosynthesis I 21 21 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 17 1
superpathway of N-acetylneuraminate degradation 22 16 1
superpathway of purine nucleotides de novo biosynthesis II 26 23 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 20 2
superpathway of histidine, purine, and pyrimidine biosynthesis 46 42 1