Experiment set9IT026 for Pseudomonas syringae pv. syringae B728a

Compare to:

KB with Plumbagin 10 mM

Group: stress
Media: KB + Plumbagin (10 mM) + Dimethyl Sulfoxide (1 vol%)
Culturing: SyringaeB728a_ML2, 24 well microplate, Aerobic, at 28 (C), shaken=250 rpm
By: Tyler Helmann on 7/23/19
Media components: 10 g/L Bacto Peptone, 1.5 g/L Potassium phosphate dibasic, 15 g/L Glycerol, 0.6 g/L Magnesium sulfate

Specific Phenotypes

For 14 genes in this experiment

For stress Plumbagin in Pseudomonas syringae pv. syringae B728a

For stress Plumbagin across organisms

SEED Subsystems

Subsystem #Specific
Alginate metabolism 1
Arginine and Ornithine Degradation 1
Biotin biosynthesis 1
Glutamate dehydrogenases 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Mannose Metabolism 1
Pentose phosphate pathway 1
n-Phenylalkanoic acid degradation 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
L-glutamate degradation I 1 1 1
D-mannose degradation I 2 1 1
linoleate biosynthesis II (animals) 2 1 1
D-mannose degradation II 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
pseudouridine degradation 2 1 1
pentose phosphate pathway (oxidative branch) I 3 3 1
β-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation 3 2 1
L-alanine degradation II (to D-lactate) 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
mannitol biosynthesis 3 1 1
ethene biosynthesis IV (engineered) 3 1 1
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
GDP-mannose biosynthesis 4 4 1
phytol degradation 4 3 1
mannitol degradation II 4 2 1
long chain fatty acid ester synthesis (engineered) 4 1 1
phosphatidylcholine acyl editing 4 1 1
wax esters biosynthesis II 4 1 1
sporopollenin precursors biosynthesis 18 4 4
octane oxidation 5 4 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
1,5-anhydrofructose degradation 5 2 1
fatty acid salvage 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
stearate biosynthesis I (animals) 6 1 1
capsaicin biosynthesis 7 3 1
L-glutamate degradation XI (reductive Stickland reaction) 7 3 1
ceramide degradation by α-oxidation 7 2 1
4-aminobutanoate degradation V 7 2 1
β-(1,4)-mannan degradation 7 2 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
pentose phosphate pathway 8 8 1
2-deoxy-D-ribose degradation II 8 6 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
L-glutamate degradation V (via hydroxyglutarate) 10 6 1
suberin monomers biosynthesis 20 3 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
colanic acid building blocks biosynthesis 11 9 1
superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis 14 7 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
superpathway of glucose and xylose degradation 17 15 1
methylaspartate cycle 19 10 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
palmitate biosynthesis III 29 28 1
oleate β-oxidation 35 30 1