Pyruvate-Sulfite (60-20mM) with Tungstate 2mM
Group:
stress
Media:
Dv_base_medium +
Sodium pyruvate (60 mM) +
sodium sulfite (20 mM) +
Sodium tungstate dihydrate (2 mM), pH=7.2
Culturing: DvH_JW710, 24 deep-well microplate, Anaerobic, at 30 (C), shaken=0 rpm
By: Valentine on
4/17/2017
Media components: 20 mM
Ammonium chloride, 30 mM
Tris hydrochloride, 0.12 mM
EDTA, 1 mM
Sodium sulfide nonahydrate, 8 mM
Magnesium chloride hexahydrate, 0.6 mM
Calcium chloride, 2 mM
Potassium phosphate dibasic, 60 uM
Iron (II) chloride tetrahydrate, Desulfovibrio trace elements
(15 uM Manganese (II) chloride tetrahydrate, 7.8 uM Cobalt chloride hexahydrate, 9 uM Zinc chloride, 1.26 uM Sodium molybdate, 1.92 uM Boric Acid, 2.28 uM Nickel (II) sulfate hexahydrate, 0.06 uM copper (II) chloride dihydrate, 0.21 uM Sodium selenite pentahydrate, 0.144 uM Sodium tungstate dihydrate), Thauer's vitamin mix
(0.01 mg/L Pyridoxine HCl, 0.005 mg/L 4-Aminobenzoic acid, 0.005 mg/L Lipoic acid, 0.005 mg/L Nicotinic Acid, 0.005 mg/L Riboflavin, 0.005 mg/L Thiamine HCl, 0.005 mg/L calcium pantothenate, 0.002 mg/L biotin, 0.002 mg/L Folic Acid, 0.0001 mg/L Cyanocobalamin, 0.2 mg/L Choline chloride)
Specific Phenotypes
For 62 genes in this experiment
For stress Sodium pyruvate in Desulfovibrio vulgaris Hildenborough JW710
For stress Sodium pyruvate across organisms
SEED Subsystems
Metabolic Maps
Color code by fitness: see overview map or list of maps.
Maps containing gene(s) with specific phenotypes:
MetaCyc Pathways
Pathways that contain genes with specific phenotypes:
| Pathway | #Steps | #Present | #Specific |
| long-chain fatty acid activation | 1 | 1 | 1 |
| γ-linolenate biosynthesis II (animals) | 2 | 1 | 1 |
| linoleate biosynthesis II (animals) | 2 | 1 | 1 |
| glycogen degradation I | 8 | 6 | 3 |
| glycogen degradation II | 6 | 4 | 2 |
| CMP-N-acetylneuraminate biosynthesis II (bacteria) | 3 | 2 | 1 |
| 3-methyl-branched fatty acid α-oxidation | 6 | 2 | 2 |
| oleate biosynthesis I (plants) | 3 | 1 | 1 |
| alkane biosynthesis II | 3 | 1 | 1 |
| glycogen biosynthesis I (from ADP-D-Glucose) | 4 | 3 | 1 |
| starch degradation V | 4 | 3 | 1 |
| starch degradation III | 4 | 2 | 1 |
| phytol degradation | 4 | 2 | 1 |
| arsenic detoxification (bacteria) | 4 | 2 | 1 |
| phosphatidylcholine acyl editing | 4 | 1 | 1 |
| wax esters biosynthesis II | 4 | 1 | 1 |
| long chain fatty acid ester synthesis (engineered) | 4 | 1 | 1 |
| sporopollenin precursors biosynthesis | 18 | 4 | 4 |
| sphingosine and sphingosine-1-phosphate metabolism | 10 | 2 | 2 |
| CMP-N-acetylneuraminate biosynthesis I (eukaryotes) | 5 | 1 | 1 |
| octane oxidation | 5 | 1 | 1 |
| creatinine degradation II | 5 | 1 | 1 |
| pentose phosphate pathway (non-oxidative branch) II | 6 | 6 | 1 |
| stearate biosynthesis II (bacteria and plants) | 6 | 5 | 1 |
| stearate biosynthesis IV | 6 | 4 | 1 |
| arsenate detoxification I | 6 | 3 | 1 |
| TCA cycle VIII (Chlamydia) | 6 | 3 | 1 |
| stearate biosynthesis I (animals) | 6 | 1 | 1 |
| 6-gingerol analog biosynthesis (engineered) | 6 | 1 | 1 |
| fatty acid salvage | 6 | 1 | 1 |
| incomplete reductive TCA cycle | 7 | 6 | 1 |
| CMP-8-amino-3,8-dideoxy-D-manno-octulosonate biosynthesis | 7 | 5 | 1 |
| pyruvate fermentation to propanoate I | 7 | 2 | 1 |
| capsaicin biosynthesis | 7 | 1 | 1 |
| icosapentaenoate biosynthesis III (8-desaturase, mammals) | 7 | 1 | 1 |
| ceramide degradation by α-oxidation | 7 | 1 | 1 |
| icosapentaenoate biosynthesis II (6-desaturase, mammals) | 7 | 1 | 1 |
| arachidonate biosynthesis III (6-desaturase, mammals) | 7 | 1 | 1 |
| sucrose biosynthesis II | 8 | 6 | 1 |
| partial TCA cycle (obligate autotrophs) | 8 | 5 | 1 |
| ceramide and sphingolipid recycling and degradation (yeast) | 16 | 2 | 2 |
| TCA cycle VI (Helicobacter) | 9 | 7 | 1 |
| TCA cycle V (2-oxoglutarate synthase) | 9 | 7 | 1 |
| TCA cycle VII (acetate-producers) | 9 | 6 | 1 |
| TCA cycle IV (2-oxoglutarate decarboxylase) | 9 | 5 | 1 |
| TCA cycle II (plants and fungi) | 9 | 5 | 1 |
| glycolysis IV | 10 | 8 | 1 |
| TCA cycle I (prokaryotic) | 10 | 6 | 1 |
| TCA cycle III (animals) | 10 | 6 | 1 |
| starch biosynthesis | 10 | 5 | 1 |
| anaerobic energy metabolism (invertebrates, mitochondrial) | 10 | 2 | 1 |
| suberin monomers biosynthesis | 20 | 2 | 2 |
| superpathway of fatty acid biosynthesis II (plant) | 43 | 37 | 4 |
| reductive TCA cycle I | 11 | 9 | 1 |
| superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle | 22 | 14 | 2 |
| L-glutamate degradation VIII (to propanoate) | 11 | 2 | 1 |
| superpathway of glyoxylate bypass and TCA | 12 | 7 | 1 |
| reductive TCA cycle II | 12 | 7 | 1 |
| (S)-lactate fermentation to propanoate, acetate and hydrogen | 13 | 7 | 1 |
| superpathway of glyoxylate cycle and fatty acid degradation | 14 | 5 | 1 |
| superpathway of CMP-sialic acids biosynthesis | 15 | 2 | 1 |
| palmitate biosynthesis II (type II fatty acid synthase) | 31 | 29 | 2 |
| mixed acid fermentation | 16 | 12 | 1 |
| cutin biosynthesis | 16 | 1 | 1 |
| superpathway of anaerobic energy metabolism (invertebrates) | 17 | 6 | 1 |
| methylaspartate cycle | 19 | 6 | 1 |
| superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass | 26 | 18 | 1 |
| superpathway of fatty acids biosynthesis (E. coli) | 53 | 47 | 2 |
| palmitate biosynthesis III | 29 | 21 | 1 |
| oleate β-oxidation | 35 | 1 | 1 |
| Methanobacterium thermoautotrophicum biosynthetic metabolism | 56 | 22 | 1 |