Experiment set8IT066 for Phaeobacter inhibens DSM 17395

Compare to:

L-Valine nitrogen source

Group: nitrogen source
Media: DinoMM_noNitrogen_HighNutrient_SucroseC + L-Valine (5 mM), pH=7.2
Culturing: Phaeo_ML1, tube, Aerobic, at 25 (C), shaken=200 rpm
By: Mark on 1/20/2015
Media components: 20 g/L Sea salts, 0.1 g/L Potassium phosphate monobasic, 20 mM Sucrose, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 6 genes in this experiment

For nitrogen source L-Valine in Phaeobacter inhibens DSM 17395

For nitrogen source L-Valine across organisms

SEED Subsystems

Subsystem #Specific
Thiamin biosynthesis 3
Acetoin, butanediol metabolism 1
Branched-Chain Amino Acid Biosynthesis 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Valine degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
pyruvate fermentation to (R)-acetoin II 2 1 1
benzoyl-CoA biosynthesis 3 3 1
pyruvate fermentation to (S)-acetoin 3 2 1
pyruvate fermentation to (R)-acetoin I 3 2 1
L-valine biosynthesis 4 4 1
2-methyl-branched fatty acid β-oxidation 14 10 3
adipate degradation 5 5 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
adipate biosynthesis 5 4 1
fatty acid β-oxidation IV (unsaturated, even number) 5 3 1
propanoyl-CoA degradation II 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
acrylate degradation I 5 2 1
superpathway of (R,R)-butanediol biosynthesis 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 2
β-alanine biosynthesis II 6 4 1
L-isoleucine biosynthesis IV 6 4 1
superpathway of 2,3-butanediol biosynthesis 6 3 1
methyl ketone biosynthesis (engineered) 6 3 1
L-isoleucine biosynthesis I (from threonine) 7 7 1
fatty acid β-oxidation I (generic) 7 5 1
L-isoleucine biosynthesis III 7 4 1
benzoyl-CoA degradation I (aerobic) 7 3 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
L-valine degradation I 8 5 1
L-isoleucine biosynthesis II 8 5 1
superpathway of branched chain amino acid biosynthesis 17 17 2
phenylacetate degradation I (aerobic) 9 6 1
valproate β-oxidation 9 6 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
superpathway of coenzyme A biosynthesis II (plants) 10 8 1
3-phenylpropanoate degradation 10 4 1
superpathway of phenylethylamine degradation 11 6 1
Spodoptera littoralis pheromone biosynthesis 22 3 2
oleate β-oxidation 35 30 3
superpathway of L-isoleucine biosynthesis I 13 12 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 10 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of L-threonine metabolism 18 15 1
platensimycin biosynthesis 26 6 1