Experiment set8IT048 for Bacteroides thetaiotaomicron VPI-5482

Compare to:

Varel_Bryant_medium_Glucose with Ceftriaxone disodium salt hemi(heptahydrate) 0.2 mM

Group: stress
Media: Varel_Bryant_medium_Glucose + Ceftriaxone disodium salt hemi(heptahydrate) (0.2 mM) + Dimethyl Sulfoxide (2 vol%)
Culturing: Btheta_ML6a, 96 deep-well microplate; 1.2 mL volume, Anaerobic, at 37 (C), shaken=0 rpm
By: Hans on 6/18/18
Media components: 15 uM Hemin, 134 uM L-Methionine, 15 uM Iron (II) sulfate heptahydrate, 8.25 mM L-Cysteine, 23.8 mM Sodium bicarbonate, 20 mM D-Glucose, Mineral 3B solution (6.6 mM Potassium phosphate monobasic, 15.4 mM Sodium Chloride, 98 uM Magnesium chloride hexahydrate, 176.5 uM Calcium chloride dihydrate, 4.2 uM Cobalt chloride hexahydrate, 50.5 uM Manganese (II) chloride tetrahydrate, 9.3 mM Ammonium chloride, 1.75 mM Sodium sulfate)

Specific Phenotypes

For 3 genes in this experiment

For stress Ceftriaxone disodium salt hemi(heptahydrate) in Bacteroides thetaiotaomicron VPI-5482

For stress Ceftriaxone disodium salt hemi(heptahydrate) across organisms

SEED Subsystems

Subsystem #Specific
Glycine and Serine Utilization 1
Serine Biosynthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
linoleate biosynthesis II (animals) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
L-serine biosynthesis I 3 3 1
3-methyl-branched fatty acid α-oxidation 6 2 2
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
superpathway of L-serine and glycine biosynthesis I 4 4 1
phytol degradation 4 2 1
wax esters biosynthesis II 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
phosphatidylcholine acyl editing 4 1 1
sporopollenin precursors biosynthesis 18 4 4
sphingosine and sphingosine-1-phosphate metabolism 10 2 2
octane oxidation 5 1 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
fatty acid salvage 6 2 1
6-gingerol analog biosynthesis (engineered) 6 1 1
stearate biosynthesis I (animals) 6 1 1
ceramide degradation by α-oxidation 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
ceramide and sphingolipid recycling and degradation (yeast) 16 2 2
superpathway of sulfate assimilation and cysteine biosynthesis 9 7 1
suberin monomers biosynthesis 20 2 2
superpathway of fatty acid biosynthesis II (plant) 43 37 4
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
superpathway of fatty acids biosynthesis (E. coli) 53 47 2
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 4 1