| Pathway | #Steps | #Present | #Specific |
| trans, trans-farnesyl diphosphate biosynthesis | 2 | 2 | 2 |
| γ-linolenate biosynthesis II (animals) | 2 | 2 | 2 |
| long-chain fatty acid activation | 1 | 1 | 1 |
| acetate and ATP formation from acetyl-CoA III | 1 | 1 | 1 |
| acetate conversion to acetyl-CoA | 1 | 1 | 1 |
| geranyl diphosphate biosynthesis | 1 | 1 | 1 |
| trehalose biosynthesis IV | 1 | 1 | 1 |
| fatty acid β-oxidation III (unsaturated, odd number) | 1 | 1 | 1 |
| benzoyl-CoA biosynthesis | 3 | 3 | 2 |
| oleate β-oxidation | 35 | 31 | 20 |
| fatty acid β-oxidation I (generic) | 7 | 6 | 4 |
| succinate to cytochrome bd oxidase electron transfer | 2 | 2 | 1 |
| trehalose degradation VI (periplasmic) | 2 | 2 | 1 |
| 4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis I | 2 | 2 | 1 |
| pyruvate to cytochrome bd oxidase electron transfer | 2 | 2 | 1 |
| trehalose degradation II (cytosolic) | 2 | 2 | 1 |
| NADH to cytochrome bd oxidase electron transfer I | 2 | 2 | 1 |
| L-cysteine biosynthesis III (from L-homocysteine) | 2 | 2 | 1 |
| fatty acid salvage | 6 | 5 | 3 |
| pyruvate fermentation to butanol II (engineered) | 6 | 4 | 3 |
| hydrogen sulfide biosynthesis II (mammalian) | 6 | 4 | 3 |
| all-trans-farnesol biosynthesis | 4 | 2 | 2 |
| glutathione degradation (DUG pathway) | 2 | 1 | 1 |
| (3R)-linalool biosynthesis | 2 | 1 | 1 |
| linoleate biosynthesis II (animals) | 2 | 1 | 1 |
| NADH to cytochrome bd oxidase electron transfer II | 2 | 1 | 1 |
| pseudouridine degradation | 2 | 1 | 1 |
| indole-3-acetate biosynthesis IV (bacteria) | 2 | 1 | 1 |
| acrylonitrile degradation I | 2 | 1 | 1 |
| linalool biosynthesis I | 2 | 1 | 1 |
| (3S)-linalool biosynthesis | 2 | 1 | 1 |
| 10,13-epoxy-11-methyl-octadecadienoate biosynthesis | 2 | 1 | 1 |
| indole-3-acetate biosynthesis III (bacteria) | 2 | 1 | 1 |
| oleate β-oxidation (thioesterase-dependent, yeast) | 2 | 1 | 1 |
| pyruvate fermentation to hexanol (engineered) | 11 | 7 | 5 |
| 2-methylcitrate cycle I | 5 | 5 | 2 |
| L-ornithine biosynthesis I | 5 | 5 | 2 |
| adipate degradation | 5 | 5 | 2 |
| polyisoprenoid biosynthesis (E. coli) | 5 | 5 | 2 |
| adipate biosynthesis | 5 | 4 | 2 |
| glutaryl-CoA degradation | 5 | 3 | 2 |
| fatty acid β-oxidation IV (unsaturated, even number) | 5 | 3 | 2 |
| fatty acid β-oxidation II (plant peroxisome) | 5 | 3 | 2 |
| fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) | 5 | 2 | 2 |
| (8E,10E)-dodeca-8,10-dienol biosynthesis | 11 | 5 | 4 |
| 2-methyl-branched fatty acid β-oxidation | 14 | 9 | 5 |
| glyoxylate cycle | 6 | 6 | 2 |
| 2-oxoisovalerate decarboxylation to isobutanoyl-CoA | 3 | 3 | 1 |
| ethanol degradation IV | 3 | 3 | 1 |
| L-proline biosynthesis III (from L-ornithine) | 3 | 3 | 1 |
| pyruvate decarboxylation to acetyl CoA I | 3 | 3 | 1 |
| ethanol degradation II | 3 | 3 | 1 |
| L-arginine degradation I (arginase pathway) | 3 | 3 | 1 |
| L-ornithine biosynthesis II | 3 | 3 | 1 |
| glycerol degradation I | 3 | 3 | 1 |
| 2-methylcitrate cycle II | 6 | 5 | 2 |
| L-isoleucine degradation I | 6 | 4 | 2 |
| ethanol degradation III | 3 | 2 | 1 |
| superpathway of acetate utilization and formation | 3 | 2 | 1 |
| trehalose biosynthesis V | 3 | 2 | 1 |
| L-isoleucine biosynthesis V | 3 | 2 | 1 |
| L-phenylalanine degradation II (anaerobic) | 3 | 2 | 1 |
| L-tryptophan degradation I (via anthranilate) | 3 | 2 | 1 |
| valproate β-oxidation | 9 | 5 | 3 |
| 3-methyl-branched fatty acid α-oxidation | 6 | 3 | 2 |
| propanoate fermentation to 2-methylbutanoate | 6 | 3 | 2 |
| methyl ketone biosynthesis (engineered) | 6 | 3 | 2 |
| bisabolene biosynthesis (engineered) | 6 | 2 | 2 |
| 6-gingerol analog biosynthesis (engineered) | 6 | 2 | 2 |
| L-arginine degradation X (arginine monooxygenase pathway) | 3 | 1 | 1 |
| oleate β-oxidation (reductase-dependent, yeast) | 3 | 1 | 1 |
| superpathway of linalool biosynthesis | 3 | 1 | 1 |
| superpathway of acrylonitrile degradation | 3 | 1 | 1 |
| alkane biosynthesis II | 3 | 1 | 1 |
| molybdenum cofactor biosynthesis | 3 | 1 | 1 |
| oleate biosynthesis I (plants) | 3 | 1 | 1 |
| taurine biosynthesis III | 3 | 1 | 1 |
| superpathway of glyoxylate cycle and fatty acid degradation | 14 | 11 | 4 |
| Arg/N-end rule pathway (eukaryotic) | 14 | 8 | 4 |
| fatty acid β-oxidation VI (mammalian peroxisome) | 7 | 3 | 2 |
| pyruvate fermentation to butanoate | 7 | 3 | 2 |
| benzoyl-CoA degradation I (aerobic) | 7 | 3 | 2 |
| arachidonate biosynthesis III (6-desaturase, mammals) | 7 | 2 | 2 |
| icosapentaenoate biosynthesis II (6-desaturase, mammals) | 7 | 2 | 2 |
| L-arginine degradation VI (arginase 2 pathway) | 4 | 4 | 1 |
| glycerol and glycerophosphodiester degradation | 4 | 4 | 1 |
| partial TCA cycle (obligate autotrophs) | 8 | 7 | 2 |
| nitrogen remobilization from senescing leaves | 8 | 6 | 2 |
| L-phenylalanine degradation III | 4 | 3 | 1 |
| queuosine biosynthesis I (de novo) | 4 | 3 | 1 |
| homocysteine and cysteine interconversion | 4 | 3 | 1 |
| phosphatidylcholine acyl editing | 4 | 3 | 1 |
| phytol degradation | 4 | 3 | 1 |
| L-valine degradation I | 8 | 5 | 2 |
| starch degradation V | 4 | 2 | 1 |
| chitin deacetylation | 4 | 2 | 1 |
| pyruvate fermentation to butanol I | 8 | 3 | 2 |
| stellatic acid biosynthesis | 8 | 2 | 2 |
| ipsdienol biosynthesis | 4 | 1 | 1 |
| wax esters biosynthesis II | 4 | 1 | 1 |
| dimethylsulfoniopropanoate biosynthesis III (algae and phytoplankton) | 4 | 1 | 1 |
| oleate β-oxidation (isomerase-dependent, yeast) | 4 | 1 | 1 |
| long chain fatty acid ester synthesis (engineered) | 4 | 1 | 1 |
| methyl phomopsenoate biosynthesis | 4 | 1 | 1 |
| TCA cycle II (plants and fungi) | 9 | 9 | 2 |
| L-arginine biosynthesis III (via N-acetyl-L-citrulline) | 9 | 9 | 2 |
| L-arginine biosynthesis I (via L-ornithine) | 9 | 8 | 2 |
| TCA cycle V (2-oxoglutarate synthase) | 9 | 8 | 2 |
| TCA cycle VII (acetate-producers) | 9 | 7 | 2 |
| TCA cycle IV (2-oxoglutarate decarboxylase) | 9 | 7 | 2 |
| TCA cycle VI (Helicobacter) | 9 | 6 | 2 |
| superpathway of Clostridium acetobutylicum acidogenic fermentation | 9 | 4 | 2 |
| phenylacetate degradation I (aerobic) | 9 | 4 | 2 |
| benzoate biosynthesis I (CoA-dependent, β-oxidative) | 9 | 3 | 2 |
| sporopollenin precursors biosynthesis | 18 | 4 | 4 |
| tRNA processing | 10 | 10 | 2 |
| TCA cycle III (animals) | 10 | 10 | 2 |
| NAD salvage pathway II (PNC IV cycle) | 5 | 5 | 1 |
| TCA cycle I (prokaryotic) | 10 | 9 | 2 |
| L-arginine biosynthesis II (acetyl cycle) | 10 | 8 | 2 |
| L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde | 5 | 4 | 1 |
| 4-hydroxybenzoate biosynthesis III (plants) | 5 | 4 | 1 |
| superpathway of L-cysteine biosynthesis (mammalian) | 5 | 4 | 1 |
| L-glutamate degradation V (via hydroxyglutarate) | 10 | 6 | 2 |
| L-arginine degradation XIII (reductive Stickland reaction) | 5 | 3 | 1 |
| octane oxidation | 5 | 3 | 1 |
| (R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) | 5 | 3 | 1 |
| 3-hydroxy-4-methyl-anthranilate biosynthesis II | 5 | 3 | 1 |
| L-tryptophan degradation III (eukaryotic) | 15 | 7 | 3 |
| sphingosine and sphingosine-1-phosphate metabolism | 10 | 4 | 2 |
| 3-phenylpropanoate degradation | 10 | 4 | 2 |
| 9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) | 10 | 4 | 2 |
| queuosine biosynthesis III (queuosine salvage) | 5 | 2 | 1 |
| benzoate biosynthesis III (CoA-dependent, non-β-oxidative) | 5 | 2 | 1 |
| superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) | 10 | 3 | 2 |
| mono-trans, poly-cis decaprenyl phosphate biosynthesis | 5 | 1 | 1 |
| L-arginine degradation II (AST pathway) | 5 | 1 | 1 |
| reductive TCA cycle I | 11 | 6 | 2 |
| superpathway of phenylethylamine degradation | 11 | 5 | 2 |
| peptido-conjugates in tissue regeneration biosynthesis | 17 | 6 | 3 |
| superpathway of glyoxylate bypass and TCA | 12 | 11 | 2 |
| superpathway of ubiquinol-8 biosynthesis (early decarboxylation) | 12 | 10 | 2 |
| superpathway of L-cysteine biosynthesis (fungi) | 6 | 5 | 1 |
| superpathway of geranylgeranyl diphosphate biosynthesis II (via MEP) | 12 | 9 | 2 |
| stearate biosynthesis II (bacteria and plants) | 6 | 4 | 1 |
| L-isoleucine biosynthesis IV | 6 | 4 | 1 |
| stearate biosynthesis IV | 6 | 4 | 1 |
| β-alanine biosynthesis II | 6 | 3 | 1 |
| γ-glutamyl cycle | 6 | 3 | 1 |
| reductive TCA cycle II | 12 | 5 | 2 |
| L-glutamate degradation VII (to butanoate) | 12 | 4 | 2 |
| leukotriene biosynthesis | 6 | 2 | 1 |
| 3-hydroxy-4-methyl-anthranilate biosynthesis I | 6 | 2 | 1 |
| superpathway of bitter acids biosynthesis | 18 | 3 | 3 |
| adlupulone and adhumulone biosynthesis | 6 | 1 | 1 |
| stearate biosynthesis I (animals) | 6 | 1 | 1 |
| colupulone and cohumulone biosynthesis | 6 | 1 | 1 |
| lupulone and humulone biosynthesis | 6 | 1 | 1 |
| taxadiene biosynthesis (engineered) | 13 | 9 | 2 |
| folate transformations I | 13 | 9 | 2 |
| superpathway of Clostridium acetobutylicum solventogenic fermentation | 13 | 4 | 2 |
| (4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) | 13 | 3 | 2 |
| ethene biosynthesis III (microbes) | 7 | 6 | 1 |
| L-Nδ-acetylornithine biosynthesis | 7 | 5 | 1 |
| superpathway of thiamine diphosphate biosynthesis III (eukaryotes) | 7 | 3 | 1 |
| capsaicin biosynthesis | 7 | 3 | 1 |
| L-homomethionine biosynthesis | 7 | 2 | 1 |
| ceramide degradation by α-oxidation | 7 | 2 | 1 |
| docosahexaenoate biosynthesis III (6-desaturase, mammals) | 14 | 3 | 2 |
| icosapentaenoate biosynthesis III (8-desaturase, mammals) | 7 | 1 | 1 |
| superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle | 22 | 20 | 3 |
| Spodoptera littoralis pheromone biosynthesis | 22 | 3 | 3 |
| L-citrulline biosynthesis | 8 | 6 | 1 |
| mixed acid fermentation | 16 | 11 | 2 |
| sucrose biosynthesis II | 8 | 5 | 1 |
| glycerol degradation to butanol | 16 | 9 | 2 |
| glycogen degradation I | 8 | 4 | 1 |
| glycogen biosynthesis III (from α-maltose 1-phosphate) | 8 | 4 | 1 |
| 2-deoxy-D-ribose degradation II | 8 | 3 | 1 |
| ceramide and sphingolipid recycling and degradation (yeast) | 16 | 4 | 2 |
| 2-methylpropene degradation | 8 | 2 | 1 |
| crotonate fermentation (to acetate and cyclohexane carboxylate) | 16 | 3 | 2 |
| superpathway of arginine and polyamine biosynthesis | 17 | 12 | 2 |
| superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation | 17 | 5 | 2 |
| benzoate fermentation (to acetate and cyclohexane carboxylate) | 17 | 3 | 2 |
| folate transformations III (E. coli) | 9 | 9 | 1 |
| L-lysine biosynthesis I | 9 | 9 | 1 |
| NAD de novo biosynthesis II (from tryptophan) | 9 | 8 | 1 |
| 1-butanol autotrophic biosynthesis (engineered) | 27 | 18 | 3 |
| chitin biosynthesis | 9 | 6 | 1 |
| reductive glycine pathway of autotrophic CO2 fixation | 9 | 5 | 1 |
| 3-hydroxypropanoate/4-hydroxybutanate cycle | 18 | 8 | 2 |
| cis-geranyl-CoA degradation | 9 | 2 | 1 |
| toluene degradation VI (anaerobic) | 18 | 3 | 2 |
| starch degradation II | 9 | 1 | 1 |
| viridicatumtoxin biosynthesis | 9 | 1 | 1 |
| methylaspartate cycle | 19 | 10 | 2 |
| superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae) | 10 | 9 | 1 |
| xanthan biosynthesis | 10 | 8 | 1 |
| superpathway of coenzyme A biosynthesis II (plants) | 10 | 7 | 1 |
| superpathway of thiamine diphosphate biosynthesis I | 10 | 7 | 1 |
| reductive acetyl coenzyme A pathway I (homoacetogenic bacteria) | 10 | 3 | 1 |
| methyl tert-butyl ether degradation | 10 | 2 | 1 |
| suberin monomers biosynthesis | 20 | 2 | 2 |
| superpathway of fatty acid biosynthesis II (plant) | 43 | 30 | 4 |
| folate transformations II (plants) | 11 | 10 | 1 |
| superpathway of thiamine diphosphate biosynthesis II | 11 | 9 | 1 |
| gallate degradation III (anaerobic) | 11 | 2 | 1 |
| superpathway of L-citrulline metabolism | 12 | 8 | 1 |
| L-tryptophan degradation IX | 12 | 5 | 1 |
| L-tryptophan degradation XII (Geobacillus) | 12 | 4 | 1 |
| indole-3-acetate biosynthesis II | 12 | 3 | 1 |
| 10-cis-heptadecenoyl-CoA degradation (yeast) | 12 | 2 | 1 |
| 10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) | 12 | 2 | 1 |
| ethene biosynthesis V (engineered) | 25 | 17 | 2 |
| androstenedione degradation I (aerobic) | 25 | 6 | 2 |
| superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass | 26 | 24 | 2 |
| superpathway of ergosterol biosynthesis II | 26 | 9 | 2 |
| platensimycin biosynthesis | 26 | 6 | 2 |
| superpathway of ergosterol biosynthesis I | 26 | 3 | 2 |
| androstenedione degradation II (anaerobic) | 27 | 4 | 2 |
| superpathway of NAD biosynthesis in eukaryotes | 14 | 11 | 1 |
| hypoglycin biosynthesis | 14 | 4 | 1 |
| superpathway of testosterone and androsterone degradation | 28 | 7 | 2 |
| superpathway of cholesterol degradation I (cholesterol oxidase) | 42 | 8 | 3 |
| palmitate biosynthesis II (type II fatty acid synthase) | 31 | 22 | 2 |
| superpathway of cholesterol degradation II (cholesterol dehydrogenase) | 47 | 8 | 3 |
| superpathway of L-methionine salvage and degradation | 16 | 8 | 1 |
| cutin biosynthesis | 16 | 1 | 1 |
| cholesterol degradation to androstenedione I (cholesterol oxidase) | 17 | 2 | 1 |
| superpathway of L-lysine, L-threonine and L-methionine biosynthesis I | 18 | 16 | 1 |
| Methanobacterium thermoautotrophicum biosynthetic metabolism | 56 | 19 | 3 |
| superpathway of cholesterol biosynthesis | 38 | 3 | 2 |
| cholesterol degradation to androstenedione II (cholesterol dehydrogenase) | 22 | 2 | 1 |
| L-tryptophan degradation XI (mammalian, via kynurenine) | 23 | 8 | 1 |
| superpathway of cholesterol degradation III (oxidase) | 49 | 4 | 2 |
| aspartate superpathway | 25 | 21 | 1 |
| photosynthetic 3-hydroxybutanoate biosynthesis (engineered) | 26 | 17 | 1 |
| superpathway of fatty acids biosynthesis (E. coli) | 53 | 38 | 2 |
| anaerobic aromatic compound degradation (Thauera aromatica) | 27 | 2 | 1 |
| palmitate biosynthesis III | 29 | 21 | 1 |
| superpathway of chorismate metabolism | 59 | 41 | 2 |
| superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis | 33 | 13 | 1 |
| superpathway of aromatic compound degradation via 3-oxoadipate | 35 | 13 | 1 |
| superpathway of aromatic compound degradation via 2-hydroxypentadienoate | 42 | 8 | 1 |