Experiment set8IT025 for Paraburkholderia graminis OAS925

Compare to:

Plant=Brachypodium_distachyon; PreTreatment=None; PlantTreatment=None; Sample=rhizosphere; GrowthSubstrate=Agar_0.5%; Collection=R2A_with_kan10; Time=21days

Group: in planta
Media: MS_Basal_Salts_Robin_0.5x + Plant=Brachypodium_distachyon; PreTreatment=None; PlantTreatment=None; Sample=rhizosphere; GrowthSubstrate=Agar_0.5%; Collection=R2A_with_kan10; Time=21days
Culturing: Burkholderia_OAS925_ML2, pot
By: Robin on 7/2/21
Media components: 825 mg/L Ammonium Nitrate, 3.1 mg/L Boric Acid, 166.1 mg/L Calcium chloride, 0.0125 mg/L Cobalt chloride hexahydrate, 0.0125 mg/L Copper (II) sulfate pentahydrate, 18.63 mg/L EDTA (disodium salt), 13.9 mg/L Iron (II) sulfate heptahydrate, 90.35 mg/L Magnesium sulfate, 8.45 mg/L Manganese sulfate, 0.415 mg/L Potassium iodide, 950 mg/L Potassium nitrate, 625 uM Potassium phosphate monobasic, 4.3 mg/L Zinc sulfate heptahydrate

Specific Phenotypes

For 24 genes in this experiment

For in planta Plant=Brachypodium_distachyon; PreTreatment=None; PlantTreatment=None; Sample=rhizosphere; GrowthSubstrate=Agar_0.5%; Collection=R2A_with_kan10; Time=21days in Paraburkholderia graminis OAS925

For in planta Plant=Brachypodium_distachyon; PreTreatment=None; PlantTreatment=None; Sample=rhizosphere; GrowthSubstrate=Agar_0.5%; Collection=R2A_with_kan10; Time=21days across organisms

SEED Subsystems

Subsystem #Specific
Bacterial Chemotaxis 3
Aromatic amino acid degradation 1
Bacterial hemoglobins 1
Fructose utilization 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Glycerol and Glycerol-3-phosphate Uptake and Utilization 1
NAD and NADP cofactor biosynthesis global 1
Orphan regulatory proteins 1
Polyamine Metabolism 1
Threonine and Homoserine Biosynthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-aspartate biosynthesis 1 1 1
3-(4-hydroxyphenyl)pyruvate biosynthesis 1 1 1
L-aspartate degradation I 1 1 1
malate/L-aspartate shuttle pathway 2 2 1
L-tryptophan degradation IV (via indole-3-lactate) 2 1 1
L-tyrosine degradation II 2 1 1
atromentin biosynthesis 2 1 1
L-glutamate degradation II 2 1 1
L-tryptophan degradation I (via anthranilate) 3 3 1
L-tyrosine biosynthesis I 3 3 1
L-phenylalanine biosynthesis I 3 3 1
L-asparagine degradation III (mammalian) 3 2 1
sulfolactate degradation III 3 2 1
(R)-cysteate degradation 3 1 1
L-tyrosine degradation IV (to 4-methylphenol) 3 1 1
indole-3-acetate biosynthesis VI (bacteria) 3 1 1
L-phenylalanine degradation II (anaerobic) 3 1 1
superpathway of L-aspartate and L-asparagine biosynthesis 4 2 1
L-phenylalanine degradation III 4 2 1
L-tyrosine degradation III 4 2 1
dimethylsulfoniopropanoate biosynthesis III (algae and phytoplankton) 4 1 1
L-tryptophan degradation VIII (to tryptophol) 4 1 1
L-tyrosine degradation I 5 5 1
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde 5 3 1
trans-4-hydroxy-L-proline degradation I 5 3 1
3-hydroxy-4-methyl-anthranilate biosynthesis II 5 3 1
superpathway of plastoquinol biosynthesis 5 2 1
L-phenylalanine degradation VI (reductive Stickland reaction) 5 1 1
L-tryptophan degradation XIII (reductive Stickland reaction) 5 1 1
L-tyrosine degradation V (reductive Stickland reaction) 5 1 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 1 1
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 7 2
superpathway of L-threonine biosynthesis 6 6 1
TCA cycle VIII (Chlamydia) 6 5 1
superpathway of sulfolactate degradation 6 3 1
3-hydroxy-4-methyl-anthranilate biosynthesis I 6 2 1
coenzyme M biosynthesis II 6 1 1
anaerobic energy metabolism (invertebrates, cytosol) 7 7 1
ethene biosynthesis III (microbes) 7 6 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 8 2
L-homomethionine biosynthesis 7 2 1
3-hydroxyquinaldate biosynthesis 8 2 1
Salmonella enterica serotype O:8 O antigen biosynthesis 8 2 1
superpathway of aromatic amino acid biosynthesis 18 18 2
NAD de novo biosynthesis II (from tryptophan) 9 7 1
superpathway of L-methionine biosynthesis (transsulfuration) 9 6 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 3 1
superpathway of L-phenylalanine biosynthesis 10 10 1
superpathway of L-tyrosine biosynthesis 10 10 1
quinoxaline-2-carboxylate biosynthesis 10 4 1
rosmarinic acid biosynthesis I 10 2 1
(S)-reticuline biosynthesis I 11 1 1
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 11 1
L-tryptophan degradation XII (Geobacillus) 12 4 1
indole-3-acetate biosynthesis II 12 4 1
L-tryptophan degradation IX 12 4 1
superpathway of L-isoleucine biosynthesis I 13 13 1
superpathway of NAD biosynthesis in eukaryotes 14 8 1
superpathway of rosmarinic acid biosynthesis 14 2 1
L-tryptophan degradation III (eukaryotic) 15 6 1
superpathway of anaerobic energy metabolism (invertebrates) 17 12 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 15 1
L-tryptophan degradation XI (mammalian, via kynurenine) 23 7 1
aspartate superpathway 25 22 1
phosalacine biosynthesis 25 6 1
phosphinothricin tripeptide biosynthesis 25 6 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 5 1
superpathway of chorismate metabolism 59 42 2
superpathway of aromatic compound degradation via 3-oxoadipate 35 19 1
superpathway of aromatic compound degradation via 2-hydroxypentadienoate 42 13 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 23 1