Experiment set7IT076 for Phaeobacter inhibens DSM 17395

Compare to:

marine broth with Fusidic acid sodium salt 0.0002 mg/ml

Group: stress
Media: marine_broth_2216 + Fusidic acid sodium salt (2e-04 mg/ml)
Culturing: Phaeo_ML1, 48 well microplate; Tecan Infinite F200, Aerobic, at 25 (C), shaken=orbital
By: Adam on marchapr14
Media components: 5 g/L Bacto Peptone, 1 g/L Yeast Extract, 0.1 g/L Ferric citrate, 19.45 g/L Sodium Chloride, 5.9 g/L Magnesium chloride hexahydrate, 3.24 g/L Magnesium sulfate, 1.8 g/L Calcium chloride, 0.55 g/L Potassium Chloride, 0.16 g/L Sodium bicarbonate, 0.08 g/L Potassium bromide, 34 mg/L Strontium chloride, 22 mg/L Boric Acid, 4 mg/L Sodium metasilicate, 2.4 mg/L sodium fluoride, 8 mg/L Disodium phosphate
Growth plate: 898 B1,B2

Specific Phenotypes

For 6 genes in this experiment

For stress Fusidic acid sodium salt in Phaeobacter inhibens DSM 17395

For stress Fusidic acid sodium salt across organisms

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Cobalt-zinc-cadmium resistance 1
Heat shock dnaK gene cluster extended 1
Isoleucine degradation 1
Polyhydroxybutyrate metabolism 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
benzoyl-CoA biosynthesis 3 3 1
phenylacetate degradation I (aerobic) 9 6 2
2-methyl-branched fatty acid β-oxidation 14 10 3
adipate degradation 5 5 1
adipate biosynthesis 5 4 1
glutaryl-CoA degradation 5 3 1
fatty acid β-oxidation IV (unsaturated, even number) 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
superpathway of phenylethylamine degradation 11 6 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 2
oleate β-oxidation 35 30 6
fatty acid salvage 6 6 1
pyruvate fermentation to butanol II (engineered) 6 4 1
L-isoleucine degradation I 6 4 1
methyl ketone biosynthesis (engineered) 6 3 1
propanoate fermentation to 2-methylbutanoate 6 3 1
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
pyruvate fermentation to butanoate 7 3 1
L-valine degradation I 8 5 1
pyruvate fermentation to butanol I 8 3 1
valproate β-oxidation 9 6 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
3-phenylpropanoate degradation 10 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 4 1
gallate degradation III (anaerobic) 11 3 1
Spodoptera littoralis pheromone biosynthesis 22 3 2
L-glutamate degradation VII (to butanoate) 12 4 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 10 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 5 1
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 1
toluene degradation VI (anaerobic) 18 4 1
platensimycin biosynthesis 26 6 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1