Experiment set7IT060 for Klebsiella michiganensis M5al

Compare to:

LB with Sodium perchlorate monohydrate 100 mM

Group: stress
Media: LB + Sodium perchlorate monohydrate (100 mM)
Culturing: Koxy_ML2, 24-well transparent microplate; Multitron, Aerobic, at 30 (C), shaken=700 rpm
By: Adam on 27-Apr-17
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: 1803 C5

Specific Phenotypes

For 21 genes in this experiment

For stress Sodium perchlorate monohydrate in Klebsiella michiganensis M5al

For stress Sodium perchlorate monohydrate across organisms

SEED Subsystems

Subsystem #Specific
Nitrate and nitrite ammonification 6
Molybdenum cofactor biosynthesis 3
Peptidoglycan Biosynthesis 2
CytR regulation 1
Pyruvate metabolism I: anaplerotic reactions, PEP 1
Transport of Molybdenum 1
Type IV pilus 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
bis(guanylyl molybdenum cofactor) biosynthesis 2 2 2
guanylyl molybdenum cofactor biosynthesis 1 1 1
L-malate degradation II 1 1 1
bis(guanylyl tungstenpterin) cofactor biosynthesis 1 1 1
nitrate reduction VIIIb (dissimilatory) 2 2 1
nitrate reduction VIII (dissimilatory) 2 2 1
nitrate reduction III (dissimilatory) 2 2 1
NADH to nitrate electron transfer 2 2 1
nitrate reduction IX (dissimilatory) 2 2 1
malate/L-aspartate shuttle pathway 2 2 1
molybdenum cofactor biosynthesis 3 3 1
L-carnitine degradation II 3 1 1
chitin deacetylation 4 3 1
peptidoglycan maturation (meso-diaminopimelate containing) 12 5 3
bis(tungstenpterin) cofactor biosynthesis 4 1 1
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 8 2
glyoxylate cycle 6 6 1
TCA cycle VIII (Chlamydia) 6 5 1
molybdopterin biosynthesis 6 5 1
methylgallate degradation 6 4 1
gluconeogenesis I 13 13 2
incomplete reductive TCA cycle 7 5 1
anaerobic energy metabolism (invertebrates, cytosol) 7 5 1
pyruvate fermentation to propanoate I 7 5 1
protocatechuate degradation I (meta-cleavage pathway) 8 6 1
peptidoglycan biosynthesis II (staphylococci) 17 12 2
peptidoglycan biosynthesis IV (Enterococcus faecium) 17 12 2
superpathway of anaerobic energy metabolism (invertebrates) 17 12 2
peptidoglycan biosynthesis V (β-lactam resistance) 17 11 2
TCA cycle II (plants and fungi) 9 7 1
TCA cycle IV (2-oxoglutarate decarboxylase) 9 7 1
TCA cycle V (2-oxoglutarate synthase) 9 7 1
TCA cycle I (prokaryotic) 10 9 1
TCA cycle III (animals) 10 8 1
peptidoglycan recycling II 10 7 1
superpathway of vanillin and vanillate degradation 10 7 1
anaerobic energy metabolism (invertebrates, mitochondrial) 10 7 1
reductive TCA cycle I 11 8 1
L-glutamate degradation VIII (to propanoate) 11 7 1
peptidoglycan biosynthesis I (meso-diaminopimelate containing) 12 12 1
superpathway of glyoxylate bypass and TCA 12 11 1
gluconeogenesis III 12 9 1
reductive TCA cycle II 12 7 1
syringate degradation 12 6 1
(S)-lactate fermentation to propanoate, acetate and hydrogen 13 10 1
formaldehyde assimilation I (serine pathway) 13 8 1
peptidoglycan recycling I 14 14 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
peptidoglycan biosynthesis III (mycobacteria) 15 11 1
mixed acid fermentation 16 16 1
methylaspartate cycle 19 12 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 18 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 25 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 23 1