Experiment set7IT056 for Marinobacter adhaerens HP15

Compare to:

marine broth with Polymyxin B sulfate 0.0004 mg/ml

Group: stress
Media: marine_broth_2216 + Polymyxin B sulfate (4e-04 mg/ml)
Culturing: Marino_ML2, 48 well microplate; Tecan Infinite F200, Aerobic, at 25 (C), shaken=orbital
By: Jake on 5/20/2014
Media components: 5 g/L Bacto Peptone, 1 g/L Yeast Extract, 0.1 g/L Ferric citrate, 19.45 g/L Sodium Chloride, 5.9 g/L Magnesium chloride hexahydrate, 3.24 g/L Magnesium sulfate, 1.8 g/L Calcium chloride, 0.55 g/L Potassium Chloride, 0.16 g/L Sodium bicarbonate, 0.08 g/L Potassium bromide, 34 mg/L Strontium chloride, 22 mg/L Boric Acid, 4 mg/L Sodium metasilicate, 2.4 mg/L sodium fluoride, 8 mg/L Disodium phosphate
Growth plate: 929 C1,C2

Specific Phenotypes

For 14 genes in this experiment

For stress Polymyxin B sulfate in Marinobacter adhaerens HP15

For stress Polymyxin B sulfate across organisms

SEED Subsystems

Subsystem #Specific
Orphan regulatory proteins 2
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Conserved gene cluster associated with Met-tRNA formyltransferase 1
DNA repair, bacterial 1
Glutathione: Non-redox reactions 1
Isoleucine degradation 1
Methylglyoxal Metabolism 1
Peptidoglycan Biosynthesis 1
Polyhydroxybutyrate metabolism 1
Type IV pilus 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
benzoyl-CoA biosynthesis 3 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 4 3
fatty acid β-oxidation I (generic) 7 5 4
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
oleate β-oxidation 35 30 16
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 3 2
pyruvate fermentation to hexanol (engineered) 11 8 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
2-methyl-branched fatty acid β-oxidation 14 10 5
fatty acid salvage 6 6 2
L-isoleucine degradation I 6 5 2
valproate β-oxidation 9 6 3
pyruvate fermentation to butanol II (engineered) 6 4 2
methylglyoxal degradation VIII 3 2 1
methylglyoxal degradation I 3 2 1
methyl ketone biosynthesis (engineered) 6 3 2
propanoate fermentation to 2-methylbutanoate 6 3 2
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 2
pyruvate fermentation to butanoate 7 4 2
benzoyl-CoA degradation I (aerobic) 7 3 2
L-valine degradation I 8 7 2
pyruvate fermentation to butanol I 8 4 2
phosphatidylcholine acyl editing 4 2 1
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
phenylacetate degradation I (aerobic) 9 9 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 6 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
3-phenylpropanoate degradation 10 3 2
phospholipases 5 1 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
superpathway of phenylethylamine degradation 11 10 2
L-glutamate degradation VII (to butanoate) 12 4 2
6-gingerol analog biosynthesis (engineered) 6 2 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
Spodoptera littoralis pheromone biosynthesis 22 4 3
L-tryptophan degradation III (eukaryotic) 15 5 2
glycerol degradation to butanol 16 10 2
superpathway of methylglyoxal degradation 8 4 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 5 2
2-methylpropene degradation 8 2 1
peptidoglycan biosynthesis II (staphylococci) 17 12 2
peptidoglycan biosynthesis IV (Enterococcus faecium) 17 12 2
peptidoglycan biosynthesis V (β-lactam resistance) 17 11 2
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 5 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 8 2
toluene degradation VI (anaerobic) 18 4 2
methyl tert-butyl ether degradation 10 2 1
gallate degradation III (anaerobic) 11 3 1
peptidoglycan biosynthesis I (meso-diaminopimelate containing) 12 12 1
anandamide biosynthesis I 12 4 1
peptidoglycan maturation (meso-diaminopimelate containing) 12 3 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
androstenedione degradation I (aerobic) 25 6 2
platensimycin biosynthesis 26 7 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 19 2
androstenedione degradation II (anaerobic) 27 4 2
superpathway of testosterone and androsterone degradation 28 6 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
peptidoglycan biosynthesis III (mycobacteria) 15 11 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 3
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 20 1