Experiment set7IT050 for Paraburkholderia bryophila 376MFSha3.1

Compare to:

Hexanoic acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Hexanoic acid (10 mM)
Culturing: Burk376_ML3_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 0.5 generations
By: Allie Pearson on 8/26/19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 9 genes in this experiment

For carbon source Hexanoic acid in Paraburkholderia bryophila 376MFSha3.1

For carbon source Hexanoic acid across organisms

SEED Subsystems

Subsystem #Specific
Glycolate, glyoxylate interconversions 2
HMG CoA Synthesis 2
Photorespiration (oxidative C2 cycle) 2
ABC transporter branched-chain amino acid (TC 3.A.1.4.1) 1
Biotin biosynthesis 1
Leucine Degradation and HMG-CoA Metabolism 1
Peptidoglycan Biosynthesis 1
Polyhydroxybutyrate metabolism 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
glycolate and glyoxylate degradation II 2 2 1
linoleate biosynthesis II (animals) 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
3-methyl-branched fatty acid α-oxidation 6 3 2
glycolate and glyoxylate degradation III 3 1 1
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
glycolate and glyoxylate degradation I 4 3 1
phytol degradation 4 3 1
wax esters biosynthesis II 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
phosphatidylcholine acyl editing 4 1 1
sporopollenin precursors biosynthesis 18 4 4
octane oxidation 5 4 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
fatty acid salvage 6 5 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
peptidoglycan maturation (meso-diaminopimelate containing) 12 4 2
stearate biosynthesis I (animals) 6 1 1
superpathway of glycol metabolism and degradation 7 5 1
capsaicin biosynthesis 7 4 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
2-deoxy-D-ribose degradation II 8 6 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
photorespiration I 9 6 1
photorespiration III 9 6 1
photorespiration II 10 6 1
suberin monomers biosynthesis 20 3 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
peptidoglycan biosynthesis IV (Enterococcus faecium) 17 12 1
peptidoglycan biosynthesis II (staphylococci) 17 12 1
superpathway of fatty acids biosynthesis (E. coli) 53 50 2
palmitate biosynthesis III 29 28 1
oleate β-oxidation 35 29 1