Experiment set7IT032 for Paraburkholderia bryophila 376MFSha3.1

Compare to:

Valeric acid carbon source

Group: carbon source
Media: MOPS minimal media_noCarbon + Valeric acid (10 mM)
Culturing: Burk376_ML3_JBEI, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 1.7 generations
By: Allie Pearson on 8/26/19
Media components: 40 mM 3-(N-morpholino)propanesulfonic acid, 4 mM Tricine, 1.32 mM Potassium phosphate dibasic, 0.01 mM Iron (II) sulfate heptahydrate, 9.5 mM Ammonium chloride, 0.276 mM Aluminum potassium sulfate dodecahydrate, 0.0005 mM Calcium chloride, 0.525 mM Magnesium chloride hexahydrate, 50 mM Sodium Chloride, 3e-09 M Ammonium heptamolybdate tetrahydrate, 4e-07 M Boric Acid, 3e-08 M Cobalt chloride hexahydrate, 1e-08 M Copper (II) sulfate pentahydrate, 8e-08 M Manganese (II) chloride tetrahydrate, 1e-08 M Zinc sulfate heptahydrate

Specific Phenotypes

For 4 genes in this experiment

For carbon source Valeric acid in Paraburkholderia bryophila 376MFSha3.1

For carbon source Valeric acid across organisms

SEED Subsystems

Subsystem #Specific
Aromatic amino acid interconversions with aryl acids 1
Biotin biosynthesis 1
HMG CoA Synthesis 1
Leucine Degradation and HMG-CoA Metabolism 1
Peptidoglycan Biosynthesis 1
Polyhydroxybutyrate metabolism 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
3-methyl-branched fatty acid α-oxidation 6 3 2
alkane biosynthesis II 3 1 1
oleate biosynthesis I (plants) 3 1 1
phytol degradation 4 3 1
wax esters biosynthesis II 4 1 1
phosphatidylcholine acyl editing 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
sporopollenin precursors biosynthesis 18 4 4
octane oxidation 5 4 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
stearate biosynthesis II (bacteria and plants) 6 5 1
fatty acid salvage 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 3 1
peptidoglycan maturation (meso-diaminopimelate containing) 12 4 2
stearate biosynthesis I (animals) 6 1 1
capsaicin biosynthesis 7 4 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
2-deoxy-D-ribose degradation II 8 6 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
suberin monomers biosynthesis 20 3 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
peptidoglycan biosynthesis II (staphylococci) 17 12 1
peptidoglycan biosynthesis IV (Enterococcus faecium) 17 12 1
superpathway of fatty acids biosynthesis (E. coli) 53 50 2
palmitate biosynthesis III 29 28 1
oleate β-oxidation 35 29 1