Experiment set7H38 for Pseudomonas stutzeri RCH2

Compare to:

RCH2 defined media with 2-Furfuraldehyde 0.032 vol%

Group: stress
Media: RCH2_defined_no_vitamin + 2-Furfuraldehyde (0.032 vol%), pH=7.2
Culturing: psRCH2_ML7, 48 well microplate; Tecan Infinite F200, Aerobic, at 30 (C), shaken=orbital
By: Adam on 8/13/2013
Media components: 0.25 g/L Ammonium chloride, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 20 mM Sodium D,L-Lactate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate)
Growth plate: 645 B7,B8

Specific Phenotypes

For 31 genes in this experiment

For stress 2-Furfuraldehyde in Pseudomonas stutzeri RCH2

For stress 2-Furfuraldehyde across organisms

SEED Subsystems

Subsystem #Specific
Polyamine Metabolism 3
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 2
Biotin biosynthesis 1
Carboxysome 1
Chorismate: Intermediate for synthesis of PAPA antibiotics, PABA, anthranilate, 3-hydroxyanthranilate and more. 1
Cobalt-zinc-cadmium resistance 1
DNA-replication 1
Fermentations: Mixed acid 1
Folate Biosynthesis 1
Hemin transport system 1
Hfl operon 1
Lactate utilization 1
NAD and NADP cofactor biosynthesis global 1
NAD regulation 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
Respiratory dehydrogenases 1 1
Restriction-Modification System 1
SigmaB stress responce regulation 1
Universal GTPases 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
L-glutamine degradation I 1 1 1
acetaldehyde biosynthesis I 1 1 1
L-methionine degradation II 3 2 2
NADH to cytochrome bd oxidase electron transfer I 2 2 1
ethanol degradation I 2 2 1
NADH to nitrate electron transfer 2 2 1
L-glutamate biosynthesis I 2 2 1
4-aminobenzoate biosynthesis I 2 2 1
NADH to cytochrome bd oxidase electron transfer II 2 2 1
phytol degradation 4 3 2
pyruvate fermentation to ethanol II 2 1 1
nitrate reduction VIIIb (dissimilatory) 2 1 1
NADH to cytochrome aa3 oxidase electron transfer 2 1 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
NADH to cytochrome bo oxidase electron transfer I 2 1 1
NADH to cytochrome bo oxidase electron transfer II 2 1 1
ammonia assimilation cycle III 3 3 1
aerobic respiration III (alternative oxidase pathway) 3 3 1
L-serine biosynthesis I 3 3 1
ethanol degradation II 3 3 1
L-threonine degradation I 6 5 2
pyruvate fermentation to ethanol III 3 2 1
pyruvate fermentation to ethanol I 3 2 1
L-isoleucine degradation II 3 2 1
L-valine degradation II 3 2 1
L-leucine degradation III 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
1,2-propanediol biosynthesis from lactate (engineered) 6 2 2
L-methionine degradation III 3 1 1
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
L-isoleucine biosynthesis I (from threonine) 7 7 2
CDP-diacylglycerol biosynthesis I 4 4 1
superpathway of L-serine and glycine biosynthesis I 4 4 1
CDP-diacylglycerol biosynthesis II 4 4 1
L-asparagine biosynthesis III (tRNA-dependent) 4 4 1
glutaminyl-tRNAgln biosynthesis via transamidation 4 4 1
aerobic respiration II (cytochrome c) (yeast) 4 3 1
aerobic respiration I (cytochrome c) 4 3 1
L-phenylalanine degradation III 4 2 1
L-tyrosine degradation III 4 2 1
phosphatidylcholine acyl editing 4 1 1
wax esters biosynthesis II 4 1 1
cytidine-5'-diphosphate-glycerol biosynthesis 4 1 1
salidroside biosynthesis 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
sporopollenin precursors biosynthesis 18 4 4
ethanolamine utilization 5 5 1
acetylene degradation (anaerobic) 5 4 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
mitochondrial NADPH production (yeast) 5 3 1
(S)-propane-1,2-diol degradation 5 3 1
octane oxidation 5 3 1
CDP-diacylglycerol biosynthesis III 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
phenylethanol biosynthesis 5 1 1
phosphatidylglycerol biosynthesis I 6 6 1
fatty acid salvage 6 6 1
phosphatidylglycerol biosynthesis II 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
NAD de novo biosynthesis I 6 5 1
NAD de novo biosynthesis IV (anaerobic) 6 5 1
stearate biosynthesis IV 6 4 1
NAD(P)/NADPH interconversion 6 3 1
Fe(II) oxidation 6 3 1
6-gingerol analog biosynthesis (engineered) 6 2 1
stearate biosynthesis I (animals) 6 1 1
superpathway of L-isoleucine biosynthesis I 13 13 2
noradrenaline and adrenaline degradation 13 4 2
3-methylbutanol biosynthesis (engineered) 7 6 1
L-glutamate and L-glutamine biosynthesis 7 5 1
serotonin degradation 7 3 1
hypoglycin biosynthesis 14 4 2
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
L-citrulline biosynthesis 8 7 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 5 1
butanol and isobutanol biosynthesis (engineered) 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-deoxy-D-ribose degradation II 8 2 1
superpathway of branched chain amino acid biosynthesis 17 17 2
superpathway of sulfate assimilation and cysteine biosynthesis 9 9 1
superpathway of L-threonine metabolism 18 13 2
superpathway of fermentation (Chlamydomonas reinhardtii) 9 5 1
nicotine biosynthesis 9 3 1
chloramphenicol biosynthesis 9 1 1
superpathway of tetrahydrofolate biosynthesis 10 8 1
suberin monomers biosynthesis 20 2 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
superpathway of candicidin biosynthesis 11 4 1
superpathway of phospholipid biosynthesis III (E. coli) 12 10 1
superpathway of tetrahydrofolate biosynthesis and salvage 12 10 1
superpathway of L-citrulline metabolism 12 9 1
superpathway of nicotine biosynthesis 12 4 1
superpathway of cardiolipin biosynthesis (bacteria) 13 9 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 1
L-tryptophan degradation V (side chain pathway) 13 1 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
mixed acid fermentation 16 12 1
cutin biosynthesis 16 1 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 1
type I lipoteichoic acid biosynthesis (S. aureus) 17 5 1
heterolactic fermentation 18 15 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 16 1
superpathway of anaerobic sucrose degradation 19 15 1
superpathway of N-acetylneuraminate degradation 22 14 1
aspartate superpathway 25 22 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
superpathway of phospholipid biosynthesis II (plants) 28 10 1
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 30 1
superpathway of chorismate metabolism 59 44 1