Experiment set6S757 for Mycobacterium tuberculosis H37Rv

Compare to:

pH 4.5

Group: pH
Media: 7H9, pH=4.5
Culturing: MycoTube_ML10, tube, Aerobic, at 37 (C)
By: Kayla Dinshaw on 3/9/25
Media components: 0.5 g/L Ammonium Sulfate, 0.5 g/L L-Glutamic acid, 0.1 g/L Trisodium citrate dihydrate, 0.001 g/L Pyridoxine HCl, 0.0005 g/L biotin, 2.5 g/L Disodium phosphate, 1 g/L Potassium phosphate monobasic, 0.04 g/L Ferric ammonium citrate, 0.05 g/L Magnesium sulfate, 0.0005 g/L Calcium chloride, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L copper (II) chloride dihydrate, 5 g/L bovine serum albumin, 2 g/L D-Glucose, 4.25 g/L Sodium Chloride, 0.5 vol% Tween 80

Specific Phenotypes

For 21 genes in this experiment

SEED Subsystems

Subsystem #Specific
High affinity phosphate transporter and control of PHO regulon 3
Phosphate metabolism 3
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 2
Acid resistance mechanisms 1
Arginine and Ornithine Degradation 1
Ethanolamine utilization 1
Fermentations: Lactate 1
Fermentations: Mixed acid 1
MLST 1
Polyamine Metabolism 1
Propanediol utilization 1
Redox-dependent regulation of nucleus processes 1
Serine-glyoxylate cycle 1
Succinate dehydrogenase 1
TCA Cycle 1
Threonine anaerobic catabolism gene cluster 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
cadaverine biosynthesis 1 1 1
arginine dependent acid resistance 1 1 1
long-chain fatty acid activation 1 1 1
4-aminobutanoate degradation II 2 2 1
acetate and ATP formation from acetyl-CoA I 2 2 1
4-aminobutanoate degradation I 2 2 1
4-aminobutanoate degradation III 2 2 1
γ-linolenate biosynthesis II (animals) 2 2 1
putrescine biosynthesis I 2 1 1
linoleate biosynthesis II (animals) 2 1 1
L-arginine degradation III (arginine decarboxylase/agmatinase pathway) 2 1 1
sulfoacetaldehyde degradation I 2 1 1
superpathway of acetate utilization and formation 3 3 1
superpathway of 4-aminobutanoate degradation 3 3 1
pyruvate fermentation to acetate VII 3 2 1
pyruvate fermentation to acetate II 3 2 1
oleate biosynthesis I (plants) 3 2 1
pyruvate fermentation to acetate IV 3 2 1
pyruvate fermentation to acetate I 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway) 3 1 1
aminopropylcadaverine biosynthesis 3 1 1
putrescine biosynthesis II 3 1 1
alkane biosynthesis II 3 1 1
GABA shunt I 4 3 1
GABA shunt II 4 3 1
phytol degradation 4 3 1
pyruvate fermentation to acetate and (S)-lactate I 4 2 1
pyruvate fermentation to acetate and lactate II 4 2 1
long chain fatty acid ester synthesis (engineered) 4 2 1
superpathway of polyamine biosynthesis I 8 3 2
sulfolactate degradation II 4 1 1
superpathway of putrescine biosynthesis 4 1 1
wax esters biosynthesis II 4 1 1
spermidine biosynthesis III 4 1 1
phosphatidylcholine acyl editing 4 1 1
sporopollenin precursors biosynthesis 18 4 4
octane oxidation 5 4 1
(S)-propane-1,2-diol degradation 5 4 1
acetylene degradation (anaerobic) 5 4 1
ethanolamine utilization 5 4 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
desferrioxamine B biosynthesis 5 1 1
lupanine biosynthesis 5 1 1
desferrioxamine E biosynthesis 5 1 1
bisucaberin biosynthesis 5 1 1
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation 11 5 2
stearate biosynthesis II (bacteria and plants) 6 5 1
fatty acid salvage 6 5 1
L-threonine degradation I 6 5 1
stearate biosynthesis IV 6 4 1
superpathway of taurine degradation 6 3 1
6-gingerol analog biosynthesis (engineered) 6 2 1
superpathway of sulfolactate degradation 6 2 1
methanogenesis from acetate 6 2 1
stearate biosynthesis I (animals) 6 1 1
L-lysine degradation X 6 1 1
superpathway of L-arginine and L-ornithine degradation 13 6 2
acetyl-CoA fermentation to butanoate 7 4 1
4-aminobutanoate degradation V 7 3 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 2 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 2 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
L-lysine degradation I 7 1 1
L-valine degradation I 8 7 1
lactate fermentation to acetate, CO2 and hydrogen (Desulfovibrionales) 8 4 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
superpathway of polyamine biosynthesis II 8 2 1
superpathway of arginine and polyamine biosynthesis 17 11 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 6 1
superpathway of fermentation (Chlamydomonas reinhardtii) 9 5 1
superpathway of L-alanine fermentation (Stickland reaction) 9 3 1
L-lysine fermentation to acetate and butanoate 10 4 1
suberin monomers biosynthesis 20 2 2
superpathway of fatty acid biosynthesis II (plant) 43 34 4
gallate degradation III (anaerobic) 11 4 1
(S)-lactate fermentation to propanoate, acetate and hydrogen 13 8 1
palmitate biosynthesis II (type II fatty acid synthase) 31 24 2
mixed acid fermentation 16 13 1
cutin biosynthesis 16 1 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 1
nicotine degradation I (pyridine pathway) 17 5 1
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis 18 18 1
heterolactic fermentation 18 13 1
superpathway of L-threonine metabolism 18 12 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 16 1
mycolate biosynthesis 205 165 10
superpathway of methanogenesis 21 2 1
superpathway of L-lysine degradation 43 10 2
superpathway of N-acetylneuraminate degradation 22 16 1
superpathway of mycolate biosynthesis 239 166 10
purine nucleobases degradation II (anaerobic) 24 12 1
superpathway of fatty acids biosynthesis (E. coli) 53 39 2
palmitate biosynthesis III 29 16 1
superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis 33 33 1
oleate β-oxidation 35 27 1