Experiment set6IT053 for Pseudomonas fluorescens FW300-N2C3

Compare to:

Inosine nitrogen source

Group: nitrogen source
Media: RCH2_defined_Glucose_noNitrogen + Inosine (5 mM), pH=7
Culturing: pseudo5_N2-C3_1_ML2, 24 deep-well microplate; Multitron, Aerobic, at 30 (C), shaken=750 rpm
By: Mark on 12/17/2014
Media components: 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 20 mM D-Glucose, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 26 genes in this experiment

For nitrogen source Inosine in Pseudomonas fluorescens FW300-N2C3

For nitrogen source Inosine across organisms

SEED Subsystems

Subsystem #Specific
Urea decomposition 6
Copper homeostasis 5
Purine Utilization 3
Carboxysome 1
Cobalt-zinc-cadmium resistance 1
Cyanate hydrolysis 1
Molybdenum cofactor biosynthesis 1
Orphan regulatory proteins 1
Peptidyl-prolyl cis-trans isomerase 1
Potassium homeostasis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
urea degradation II 1 1 1
CO2 fixation into oxaloacetate (anaplerotic) 2 2 1
allantoin degradation to ureidoglycolate I (urea producing) 2 2 1
adenosine nucleotides degradation II 5 5 2
allantoin degradation to glyoxylate I 3 3 1
cyanate degradation 3 3 1
urate conversion to allantoin I 3 2 1
ureide biosynthesis 7 6 2
inosine 5'-phosphate degradation 4 4 1
guanosine nucleotides degradation III 4 4 1
guanosine nucleotides degradation II 4 4 1
adenosine nucleotides degradation I 8 7 2
guanosine nucleotides degradation I 4 3 1
superpathway of allantoin degradation in plants 8 5 2
allantoin degradation to ureidoglycolate II (ammonia producing) 4 1 1
superpathway of purines degradation in plants 18 15 4
allantoin degradation to glyoxylate III 5 2 1
allantoin degradation to glyoxylate II 5 2 1
purine nucleotides degradation II (aerobic) 11 11 2
superpathway of allantoin degradation in yeast 6 6 1
purine nucleotides degradation I (plants) 12 10 2
superpathway of guanosine nucleotides degradation (plants) 6 5 1
purine nucleobases degradation II (anaerobic) 24 16 4
C4 photosynthetic carbon assimilation cycle, NADP-ME type 7 4 1
caffeine degradation III (bacteria, via demethylation) 7 1 1
allantoin degradation IV (anaerobic) 9 3 1
theophylline degradation 9 1 1
caffeine degradation IV (bacteria, via demethylation and oxidation) 10 1 1
NiFe(CO)(CN)2 cofactor biosynthesis 10 1 1
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 6 1
3-hydroxypropanoate cycle 13 5 1
glyoxylate assimilation 13 4 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 9 1
gluconeogenesis II (Methanobacterium thermoautotrophicum) 18 9 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 8 1
superpathway of the 3-hydroxypropanoate cycle 18 5 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1