Experiment set6IT044 for Caulobacter crescentus NA1000

Compare to:

PYE 0.5x 30C survival rep2 12 days

Group: survival
Media: PYE (0.5x)
Culturing: Caulo_ML2, tube, Aerobic, at 30 (C), shaken=200 rpm
By: Sneha on 8-Aug-18
Media components: 1 g/L Bacto Peptone, 0.5 g/L Yeast Extract, 0.4 mM Magnesium sulfate, 0.25 mM Calcium chloride (final concentrations)

Specific Phenotypes

For 12 genes in this experiment

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 1
Bacterial RNA-metabolizing Zn-dependent hydrolases 1
Butanol Biosynthesis 1
Conserved gene cluster associated with Met-tRNA formyltransferase 1
D-ribose utilization 1
Glycerol and Glycerol-3-phosphate Uptake and Utilization 1
Hemin transport system 1
Isoleucine degradation 1
LOS core oligosaccharide biosynthesis 1
Polyhydroxybutyrate metabolism 1
Potassium homeostasis 1
Ribosome biogenesis bacterial 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
phosphatidylcholine resynthesis via glycerophosphocholine 2 1 1
glycerophosphodiester degradation 2 1 1
benzoyl-CoA biosynthesis 3 3 1
glycerol and glycerophosphodiester degradation 4 2 1
phospholipid remodeling (phosphatidylethanolamine, yeast) 4 2 1
2-methyl-branched fatty acid β-oxidation 14 11 3
adipate degradation 5 5 1
adipate biosynthesis 5 4 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
glutaryl-CoA degradation 5 3 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 2 1
pyruvate fermentation to hexanol (engineered) 11 7 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
oleate β-oxidation 35 29 6
fatty acid salvage 6 6 1
pyruvate fermentation to butanol II (engineered) 6 4 1
L-isoleucine degradation I 6 4 1
methyl ketone biosynthesis (engineered) 6 3 1
propanoate fermentation to 2-methylbutanoate 6 3 1
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
pyruvate fermentation to butanoate 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
L-valine degradation I 8 5 1
pyruvate fermentation to butanol I 8 3 1
valproate β-oxidation 9 5 1
phenylacetate degradation I (aerobic) 9 4 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 3 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 1
3-phenylpropanoate degradation 10 4 1
superpathway of phenylethylamine degradation 11 5 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
gallate degradation III (anaerobic) 11 1 1
L-glutamate degradation VII (to butanoate) 12 4 1
anandamide biosynthesis I 12 3 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 4 1
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 4 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 1
toluene degradation VI (anaerobic) 18 4 1
platensimycin biosynthesis 26 6 1
1-butanol autotrophic biosynthesis (engineered) 27 18 1