Experiment set6IT032 for Marinobacter adhaerens HP15

Compare to:

marine broth with Cisplatin 0.025 mg/ml

Group: stress
Media: marine_broth_2216 + Cisplatin (0.025 mg/ml)
Culturing: Marino_ML2, 48 well microplate; Tecan Infinite F200, Aerobic, at 25 (C), shaken=orbital
By: Adam on 3/4/2014
Media components: 5 g/L Bacto Peptone, 1 g/L Yeast Extract, 0.1 g/L Ferric citrate, 19.45 g/L Sodium Chloride, 5.9 g/L Magnesium chloride hexahydrate, 3.24 g/L Magnesium sulfate, 1.8 g/L Calcium chloride, 0.55 g/L Potassium Chloride, 0.16 g/L Sodium bicarbonate, 0.08 g/L Potassium bromide, 34 mg/L Strontium chloride, 22 mg/L Boric Acid, 4 mg/L Sodium metasilicate, 2.4 mg/L sodium fluoride, 8 mg/L Disodium phosphate
Growth plate: 828 C5,C6

Specific Phenotypes

For 59 genes in this experiment

For stress Cisplatin in Marinobacter adhaerens HP15

For stress Cisplatin across organisms

SEED Subsystems

Subsystem #Specific
DNA-replication 6
DNA repair, bacterial 3
ABC transporter branched-chain amino acid (TC 3.A.1.4.1) 2
DNA repair, UvrABC system 2
ABC transporter dipeptide (TC 3.A.1.5.2) 1
Ammonia assimilation 1
DNA Repair Base Excision 1
DNA repair, bacterial DinG and relatives 1
DNA repair, bacterial MutL-MutS system 1
DNA repair, bacterial RecFOR pathway 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Queuosine-Archaeosine Biosynthesis 1
RNA processing and degradation, bacterial 1
Transcription factors bacterial 1
Valine degradation 1
ZZ gjo need homes 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-glutamate biosynthesis I 2 2 2
L-glutamine degradation II 1 1 1
L-glutamine degradation I 1 1 1
ammonia assimilation cycle III 3 3 2
benzoyl-CoA biosynthesis 3 3 1
L-glutamate and L-glutamine biosynthesis 7 6 2
L-asparagine biosynthesis III (tRNA-dependent) 4 4 1
glutaminyl-tRNAgln biosynthesis via transamidation 4 4 1
2-methyl-branched fatty acid β-oxidation 14 10 3
tRNA processing 10 10 2
adipate degradation 5 5 1
fatty acid β-oxidation IV (unsaturated, even number) 5 4 1
adipate biosynthesis 5 4 1
propanoyl-CoA degradation II 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
acrylate degradation I 5 3 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
β-alanine biosynthesis II 6 4 1
methyl ketone biosynthesis (engineered) 6 3 1
fatty acid β-oxidation I (generic) 7 5 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 4 1
benzoyl-CoA degradation I (aerobic) 7 3 1
L-citrulline biosynthesis 8 7 1
L-valine degradation I 8 7 1
phenylacetate degradation I (aerobic) 9 9 1
valproate β-oxidation 9 6 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
superpathway of coenzyme A biosynthesis II (plants) 10 8 1
3-phenylpropanoate degradation 10 3 1
superpathway of phenylethylamine degradation 11 10 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
oleate β-oxidation 35 30 3
superpathway of L-citrulline metabolism 12 9 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
platensimycin biosynthesis 26 7 1