Experiment set5IT039 for Pseudomonas fluorescens SBW25-INTG

Compare to:

N-Acetyl-D-Glucosamine carbon source; with MOPS

Group: carbon source
Media: soilextract_PNNL_Prosser_PlotA_B_20191220 + N-Acetyl-D-Glucosamine (10 mM) + Ammonium chloride (10 mM) + 3-(N-morpholino)propanesulfonic acid (40 mM), pH=7
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1 mL volume, Aerobic, at 30 (C)
By: Joshua Elmore on 1/6/20

Specific Phenotypes

For 17 genes in this experiment

For carbon source N-Acetyl-D-Glucosamine in Pseudomonas fluorescens SBW25-INTG

For carbon source N-Acetyl-D-Glucosamine across organisms

SEED Subsystems

Subsystem #Specific
Chitin and N-acetylglucosamine utilization 3
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 2
UDP-N-acetylmuramate from Fructose-6-phosphate Biosynthesis 2
Calvin-Benson cycle 1
Folate Biosynthesis 1
Fructose and Mannose Inducible PTS 1
Fructose utilization 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Mannitol Utilization 1
Pentose phosphate pathway 1
Sialic Acid Metabolism 1
Threonine and Homoserine Biosynthesis 1
Trehalose Uptake and Utilization 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
N-acetylglucosamine degradation I 2 2 2
L-aspartate degradation I 1 1 1
L-aspartate biosynthesis 1 1 1
3-(4-hydroxyphenyl)pyruvate biosynthesis 1 1 1
pentose phosphate pathway (partial) 3 3 2
N-acetylglucosamine degradation II 3 2 2
L-glutamate degradation II 2 2 1
atromentin biosynthesis 2 1 1
L-tyrosine degradation II 2 1 1
L-tryptophan degradation IV (via indole-3-lactate) 2 1 1
malate/L-aspartate shuttle pathway 2 1 1
pentose phosphate pathway (non-oxidative branch) I 5 5 2
L-tyrosine biosynthesis I 3 3 1
L-phenylalanine biosynthesis I 3 3 1
tetrahydrofolate biosynthesis I 3 3 1
dTMP de novo biosynthesis (mitochondrial) 3 3 1
pentose phosphate pathway (non-oxidative branch) II 6 5 2
D-apiose degradation I 3 2 1
L-phenylalanine degradation II (anaerobic) 3 2 1
L-asparagine degradation III (mammalian) 3 2 1
superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation 6 2 2
indole-3-acetate biosynthesis VI (bacteria) 3 1 1
L-tyrosine degradation IV (to 4-methylphenol) 3 1 1
oxalate degradation II 3 1 1
(R)-cysteate degradation 3 1 1
sulfolactate degradation III 3 1 1
pentose phosphate pathway 8 8 2
superpathway of L-aspartate and L-asparagine biosynthesis 4 3 1
L-phenylalanine degradation III 4 2 1
D-galactosamine and N-acetyl-D-galactosamine degradation 4 2 1
L-tyrosine degradation III 4 2 1
chitin derivatives degradation 8 2 2
L-tryptophan degradation VIII (to tryptophol) 4 1 1
formaldehyde assimilation II (assimilatory RuMP Cycle) 9 6 2
UDP-N-acetyl-D-glucosamine biosynthesis I 5 5 1
L-tyrosine degradation I 5 5 1
Rubisco shunt 10 8 2
trans-4-hydroxy-L-proline degradation I 5 3 1
N-acetyl-D-galactosamine degradation 5 2 1
superpathway of plastoquinol biosynthesis 5 2 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 1 1
L-tryptophan degradation XIII (reductive Stickland reaction) 5 1 1
L-phenylalanine degradation VI (reductive Stickland reaction) 5 1 1
L-tyrosine degradation V (reductive Stickland reaction) 5 1 1
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 6 2
superpathway of L-threonine biosynthesis 6 6 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 2
TCA cycle VIII (Chlamydia) 6 5 1
UDP-N-acetyl-D-glucosamine biosynthesis II 6 4 1
superpathway of sulfolactate degradation 6 2 1
UDP-N-acetyl-D-galactosamine biosynthesis III 6 2 1
coenzyme M biosynthesis II 6 1 1
Calvin-Benson-Bassham cycle 13 10 2
UDP-N-acetyl-D-galactosamine biosynthesis II 7 5 1
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 9 2
anaerobic energy metabolism (invertebrates, cytosol) 7 4 1
chitin degradation I (archaea) 7 1 1
superpathway of glucose and xylose degradation 17 16 2
oxygenic photosynthesis 17 11 2
superpathway of aromatic amino acid biosynthesis 18 18 2
folate transformations III (E. coli) 9 9 1
superpathway of L-methionine biosynthesis (transsulfuration) 9 7 1
chitin biosynthesis 9 5 1
L-phenylalanine degradation IV (mammalian, via side chain) 9 5 1
superpathway of L-tyrosine biosynthesis 10 10 1
superpathway of L-phenylalanine biosynthesis 10 10 1
superpathway of tetrahydrofolate biosynthesis 10 8 1
CMP-legionaminate biosynthesis I 10 2 1
rosmarinic acid biosynthesis I 10 1 1
folate transformations II (plants) 11 10 1
O-antigen building blocks biosynthesis (E. coli) 11 10 1
superpathway of N-acetylneuraminate degradation 22 14 2
(S)-reticuline biosynthesis I 11 1 1
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 12 1
superpathway of tetrahydrofolate biosynthesis and salvage 12 10 1
indole-3-acetate biosynthesis II 12 5 1
ethene biosynthesis V (engineered) 25 18 2
superpathway of L-isoleucine biosynthesis I 13 13 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 2
1-butanol autotrophic biosynthesis (engineered) 27 19 2
peptidoglycan recycling I 14 11 1
superpathway of rosmarinic acid biosynthesis 14 1 1
Bifidobacterium shunt 15 12 1
superpathway of anaerobic energy metabolism (invertebrates) 17 8 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
superpathway of chorismate metabolism 59 42 3
superpathway of UDP-N-acetylglucosamine-derived O-antigen building blocks biosynthesis 24 9 1
aspartate superpathway 25 22 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 4 1
superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis 33 12 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 20 1