Experiment set5IT019 for Pseudomonas fluorescens SBW25-INTG

Compare to:

N-Acetyl-D-Glucosamine carbon source

Group: carbon source
Media: soilextract_PNNL_Prosser_PlotA_B_20191220 + N-Acetyl-D-Glucosamine (10 mM) + Ammonium chloride (10 mM)
Culturing: PseudoSBW25_INTG_ML3, 96 deep-well microplate; 1 mL volume, Aerobic, at 30 (C)
By: Joshua Elmore on 1/6/20

Specific Phenotypes

For 32 genes in this experiment

For carbon source N-Acetyl-D-Glucosamine in Pseudomonas fluorescens SBW25-INTG

For carbon source N-Acetyl-D-Glucosamine across organisms

SEED Subsystems

Subsystem #Specific
Chitin and N-acetylglucosamine utilization 2
Glycerol and Glycerol-3-phosphate Uptake and Utilization 2
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 2
Bacterial Cell Division 1
Beta-Glucoside Metabolism 1
Calvin-Benson cycle 1
Folate Biosynthesis 1
Fructose and Mannose Inducible PTS 1
Fructose utilization 1
Glutathione-regulated potassium-efflux system and associated functions 1
Glycerol fermenation to 1,3-propanediol 1
Mannitol Utilization 1
Methylcitrate cycle 1
Pentose phosphate pathway 1
Proline, 4-hydroxyproline uptake and utilization 1
Propionate-CoA to Succinate Module 1
Pyruvate Alanine Serine Interconversions 1
Ribosome biogenesis bacterial 1
Sialic Acid Metabolism 1
Trehalose Uptake and Utilization 1
UDP-N-acetylmuramate from Fructose-6-phosphate Biosynthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
UDP-α-D-glucuronate biosynthesis (from UDP-glucose) 1 1 1
pentose phosphate pathway (partial) 3 3 2
neolinustatin bioactivation 3 2 2
glycerol and glycerophosphodiester degradation 4 4 2
N-acetylglucosamine degradation I 2 2 1
putrescine degradation V 2 2 1
arsenate detoxification III 2 2 1
β-alanine degradation II 2 2 1
glycerophosphodiester degradation 2 2 1
linustatin bioactivation 4 2 2
lotaustralin degradation 2 1 1
pseudouridine degradation 2 1 1
UDP-α-D-xylose biosynthesis 2 1 1
linamarin degradation 2 1 1
phosphatidylcholine resynthesis via glycerophosphocholine 2 1 1
pentose phosphate pathway (non-oxidative branch) I 5 5 2
2-methylcitrate cycle I 5 5 2
dTMP de novo biosynthesis (mitochondrial) 3 3 1
glycerol degradation I 3 3 1
tetrahydrofolate biosynthesis I 3 3 1
pentose phosphate pathway (non-oxidative branch) II 6 5 2
2-methylcitrate cycle II 6 5 2
glyoxylate cycle 6 5 2
cellulose degradation II (fungi) 3 2 1
N-acetylglucosamine degradation II 3 2 1
D-apiose degradation I 3 2 1
polymyxin resistance 6 3 2
oxalate degradation II 3 1 1
pentose phosphate pathway 8 8 2
partial TCA cycle (obligate autotrophs) 8 8 2
guanosine nucleotides degradation II 4 4 1
guanosine nucleotides degradation III 4 4 1
nitrogen remobilization from senescing leaves 8 6 2
guanosine nucleotides degradation I 4 3 1
phospholipid remodeling (phosphatidylethanolamine, yeast) 4 2 1
D-galactosamine and N-acetyl-D-galactosamine degradation 4 2 1
TCA cycle IV (2-oxoglutarate decarboxylase) 9 7 2
TCA cycle VII (acetate-producers) 9 7 2
TCA cycle V (2-oxoglutarate synthase) 9 7 2
TCA cycle VI (Helicobacter) 9 7 2
TCA cycle II (plants and fungi) 9 7 2
formaldehyde assimilation II (assimilatory RuMP Cycle) 9 6 2
adipate degradation 5 5 1
TCA cycle I (prokaryotic) 10 9 2
Rubisco shunt 10 8 2
TCA cycle III (animals) 10 7 2
N-acetyl-D-galactosamine degradation 5 2 1
coumarin biosynthesis (via 2-coumarate) 5 2 1
reductive TCA cycle I 11 6 2
fatty acid salvage 6 6 1
superpathway of glyoxylate bypass and TCA 12 11 2
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 2
purine nucleotides degradation I (plants) 12 10 2
superpathway of guanosine nucleotides degradation (plants) 6 5 1
β-alanine biosynthesis II 6 5 1
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis 6 4 1
arsenic detoxification (plants) 6 4 1
reductive TCA cycle II 12 5 2
superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation 6 2 1
α-tomatine degradation 6 1 1
ethene biosynthesis V (engineered) 25 18 4
Calvin-Benson-Bassham cycle 13 10 2
superpathway of glyoxylate cycle and fatty acid degradation 14 12 2
adenosine nucleotides degradation I 8 7 1
mixed acid fermentation 16 11 2
chitin derivatives degradation 8 2 1
superpathway of glucose and xylose degradation 17 16 2
oxygenic photosynthesis 17 11 2
folate transformations III (E. coli) 9 9 1
superpathway of purines degradation in plants 18 14 2
teichuronic acid biosynthesis (B. subtilis 168) 9 2 1
UDP-sugars interconversion 9 2 1
methylaspartate cycle 19 9 2
superpathway of coenzyme A biosynthesis II (plants) 10 9 1
superpathway of tetrahydrofolate biosynthesis 10 8 1
purine nucleotides degradation II (aerobic) 11 11 1
colanic acid building blocks biosynthesis 11 11 1
folate transformations II (plants) 11 10 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 18 2
oleate β-oxidation 35 33 3
superpathway of tetrahydrofolate biosynthesis and salvage 12 10 1
arsenic detoxification (yeast) 12 4 1
anandamide biosynthesis I 12 3 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 22 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 19 2
1-butanol autotrophic biosynthesis (engineered) 27 19 2
peptidoglycan recycling I 14 11 1
2-methyl-branched fatty acid β-oxidation 14 11 1
firefly bioluminescence 14 2 1
Bifidobacterium shunt 15 12 1
arsenic detoxification (mammals) 17 8 1
superpathway of N-acetylneuraminate degradation 22 14 1
superpathway of chorismate metabolism 59 42 1