Experiment set5H6 for Pseudomonas stutzeri RCH2

Compare to:

LB with methylglyoxal 0.0016 vol%

Group: stress
Media: LB + methylglyoxal (0.0016 vol%)
Culturing: psRCH2_ML7, 48 well microplate; Tecan Infinite F200, Aerobic, at 30 (C), shaken=orbital
By: Adam on 6/28/2013
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: 563 A1,A2

Specific Phenotypes

For 18 genes in this experiment

For stress methylglyoxal in Pseudomonas stutzeri RCH2

For stress methylglyoxal across organisms

SEED Subsystems

Subsystem #Specific
DNA repair, UvrABC system 3
DNA-replication 2
DNA repair, bacterial RecFOR pathway 2
Glutathione: Non-redox reactions 2
Methylglyoxal Metabolism 2
ATP-dependent RNA helicases, bacterial 1
Biotin biosynthesis 1
DNA Repair Base Excision 1
DNA repair, bacterial DinG and relatives 1
DNA repair, bacterial MutL-MutS system 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Oxidative stress 1
Photorespiration (oxidative C2 cycle) 1
Transcription factors bacterial 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
methylglyoxal degradation VIII 3 2 2
methylglyoxal degradation I 3 2 2
superoxide radicals degradation 2 2 1
γ-linolenate biosynthesis II (animals) 2 1 1
methanol oxidation to formaldehyde IV 2 1 1
linoleate biosynthesis II (animals) 2 1 1
ethanol degradation IV 3 3 1
cardiolipin biosynthesis II 3 3 1
3-methyl-branched fatty acid α-oxidation 6 3 2
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
reactive oxygen species degradation 4 4 1
cardiolipin and phosphatidylethanolamine biosynthesis (Xanthomonas) 4 3 1
phytol degradation 4 3 1
superpathway of methylglyoxal degradation 8 3 2
long chain fatty acid ester synthesis (engineered) 4 1 1
phosphatidylcholine acyl editing 4 1 1
wax esters biosynthesis II 4 1 1
sporopollenin precursors biosynthesis 18 4 4
octane oxidation 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
fatty acid salvage 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
6-gingerol analog biosynthesis (engineered) 6 2 1
stearate biosynthesis I (animals) 6 1 1
ceramide degradation by α-oxidation 7 2 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-deoxy-D-ribose degradation II 8 2 1
suberin monomers biosynthesis 20 2 2
superpathway of fatty acid biosynthesis II (plant) 43 38 4
superpathway of cardiolipin biosynthesis (bacteria) 13 9 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 2
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 30 1