Experiment set5H42 for Shewanella oneidensis MR-1

Compare to:

LB with Carbenicillin disodium salt 0.008 mg/ml

Group: stress
Media: LB + Carbenicillin disodium salt (0.008 mg/ml)
Culturing: MR1_ML3, 48 well microplate; Tecan Infinite F200, Aerobic, at 30 (C), shaken=orbital
By: Adam on 8/21/2013
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: 653 D3,D4

Specific Phenotypes

For 45 genes in this experiment

For stress Carbenicillin disodium salt in Shewanella oneidensis MR-1

For stress Carbenicillin disodium salt across organisms

SEED Subsystems

Subsystem #Specific
Ammonia assimilation 2
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 2
Peptidoglycan Biosynthesis 2
Beta-lactamase 1
Carboxysome 1
Coenzyme B12 biosynthesis 1
Dissimilatory nitrite reductase 1
Experimental tye 1
Heme and Siroheme Biosynthesis 1
Iron acquisition in Vibrio 1
Isoleucine degradation 1
N-linked Glycosylation in Bacteria 1
Nudix proteins (nucleoside triphosphate hydrolases) 1
Orphan regulatory proteins 1
Respiratory dehydrogenases 1 1
Restriction-Modification System 1
Ribosomal protein S12p Asp methylthiotransferase 1
Tn552 1
Ton and Tol transport systems 1
Transport of Iron 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-glutamate biosynthesis I 2 2 2
L-glutamine degradation II 1 1 1
L-glutamine degradation I 1 1 1
siroheme biosynthesis 4 4 3
ammonia assimilation cycle III 3 3 2
NADH to cytochrome bd oxidase electron transfer II 2 2 1
NADH to cytochrome bd oxidase electron transfer I 2 2 1
nitrate reduction VIIIb (dissimilatory) 2 1 1
NADH to cytochrome bo oxidase electron transfer I 2 1 1
NADH to cytochrome aa3 oxidase electron transfer 2 1 1
NADH to nitrate electron transfer 2 1 1
NADH to cytochrome bo oxidase electron transfer II 2 1 1
factor 430 biosynthesis 7 3 3
aerobic respiration III (alternative oxidase pathway) 3 2 1
pyrimidine deoxyribonucleotides dephosphorylation 3 1 1
L-glutamate and L-glutamine biosynthesis 7 6 2
L-histidine degradation I 4 4 1
aerobic respiration II (cytochrome c) (yeast) 4 3 1
aerobic respiration I (cytochrome c) 4 3 1
glutaminyl-tRNAgln biosynthesis via transamidation 4 1 1
L-asparagine biosynthesis III (tRNA-dependent) 4 1 1
mitochondrial NADPH production (yeast) 5 3 1
L-histidine degradation II 5 3 1
cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) 15 3 3
fatty acid salvage 6 6 1
pyruvate fermentation to butanol II (engineered) 6 5 1
L-histidine degradation III 6 4 1
Fe(II) oxidation 6 3 1
NAD(P)/NADPH interconversion 6 3 1
cob(II)yrinate a,c-diamide biosynthesis II (late cobalt incorporation) 13 2 2
pyrimidine deoxyribonucleotides de novo biosynthesis II 7 7 1
L-histidine degradation VI 8 7 1
L-citrulline biosynthesis 8 7 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 5 1
pyrimidine deoxyribonucleotides de novo biosynthesis I 9 9 1
pyrimidine deoxyribonucleotides de novo biosynthesis III 9 8 1
pyruvate fermentation to hexanol (engineered) 11 7 1
superpathway of L-citrulline metabolism 12 9 1
adenosylcobalamin biosynthesis I (anaerobic) 36 18 3
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli) 14 14 1
adenosylcobalamin biosynthesis II (aerobic) 33 19 2
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis 18 18 1
1-butanol autotrophic biosynthesis (engineered) 27 21 1
oleate β-oxidation 35 32 1