Experiment set5H36 for Phaeobacter inhibens DSM 17395

Compare to:

m-Inositol carbon source

Group: carbon source
Media: DinoMM_noCarbon_HighNutrient + m-Inositol (20 mM), pH=7
Culturing: Phaeo_ML1, tube, Aerobic, at 25 (C), shaken=200 rpm
Growth: about 5.4 generations
By: Adam on marchapr14
Media components: 20 g/L Sea salts, 0.3 g/L Ammonium Sulfate, 0.1 g/L Potassium phosphate monobasic, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 12 genes in this experiment

For carbon source m-Inositol in Phaeobacter inhibens DSM 17395

For carbon source m-Inositol across organisms

SEED Subsystems

Subsystem #Specific
Inositol catabolism 10
Isobutyryl-CoA to Propionyl-CoA Module 1
Valine degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
myo-inositol degradation I 7 7 7
myo-, chiro- and scyllo-inositol degradation 10 7 7
β-alanine degradation I 2 1 1
β-alanine degradation II 2 1 1
sedoheptulose bisphosphate bypass 2 1 1
propanoyl-CoA degradation II 5 3 1
sucrose degradation V (sucrose α-glucosidase) 5 2 1
myo-inositol degradation II 5 1 1
pentose phosphate pathway (non-oxidative branch) II 6 5 1
Calvin-Benson-Bassham cycle 13 10 2
2,4-dinitrotoluene degradation 7 1 1
L-valine degradation I 8 5 1
oxygenic photosynthesis 17 11 2
sucrose biosynthesis I (from photosynthesis) 9 7 1
formaldehyde assimilation II (assimilatory RuMP Cycle) 9 6 1
1,3-propanediol biosynthesis (engineered) 9 4 1
glycolysis IV 10 7 1
glycolysis V (Pyrococcus) 10 7 1
glycolysis II (from fructose 6-phosphate) 11 9 1
glycolysis III (from glucose) 11 9 1
glycolysis VI (from fructose) 11 7 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 1
homolactic fermentation 12 9 1
gluconeogenesis III 12 9 1
ethene biosynthesis V (engineered) 25 17 2
gluconeogenesis I 13 12 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 20 2
glycolysis I (from glucose 6-phosphate) 13 10 1
1-butanol autotrophic biosynthesis (engineered) 27 19 2
superpathway of glycolysis and the Entner-Doudoroff pathway 17 14 1
superpathway of hexitol degradation (bacteria) 18 11 1
gluconeogenesis II (Methanobacterium thermoautotrophicum) 18 8 1
streptomycin biosynthesis 18 2 1
superpathway of anaerobic sucrose degradation 19 14 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 17 1
superpathway of N-acetylneuraminate degradation 22 15 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 20 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1