Experiment set5H12 for Phaeobacter inhibens DSM 17395

Compare to:

D-Xylose carbon source

Group: carbon source
Media: DinoMM_noCarbon_HighNutrient + D-Xylose (20 mM), pH=7
Culturing: Phaeo_ML1, tube, Aerobic, at 25 (C), shaken=200 rpm
Growth: about 5.1 generations
By: Adam on marchapr14
Media components: 20 g/L Sea salts, 0.3 g/L Ammonium Sulfate, 0.1 g/L Potassium phosphate monobasic, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 12 genes in this experiment

For carbon source D-Xylose in Phaeobacter inhibens DSM 17395

For carbon source D-Xylose across organisms

SEED Subsystems

Subsystem #Specific
Xylose utilization 3
Isobutyryl-CoA to Propionyl-CoA Module 1
NAD and NADP cofactor biosynthesis global 1
NAD regulation 1
Pyrimidine utilization 1
Redox-dependent regulation of nucleus processes 1
Ribitol, Xylitol, Arabitol, Mannitol and Sorbitol utilization 1
Valine degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
D-xylose degradation I 2 2 2
taurine degradation I 1 1 1
3-oxoadipate degradation 2 2 1
acetoacetate degradation (to acetyl CoA) 2 1 1
β-alanine degradation II 2 1 1
D-arabinitol degradation I 2 1 1
xylitol degradation I 2 1 1
β-alanine degradation I 2 1 1
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
hypotaurine degradation 3 3 1
benzoyl-CoA biosynthesis 3 3 1
ketolysis 3 3 1
polyhydroxybutanoate biosynthesis 3 2 1
(2S)-ethylmalonyl-CoA biosynthesis 4 3 1
oleate β-oxidation 35 30 8
valproate β-oxidation 9 6 2
phenylacetate degradation I (aerobic) 9 6 2
2-methyl-branched fatty acid β-oxidation 14 10 3
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 1
adipate degradation 5 5 1
NAD salvage pathway V (PNC V cycle) 5 4 1
adipate biosynthesis 5 4 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
ketogenesis 5 3 1
propanoyl-CoA degradation II 5 3 1
glutaryl-CoA degradation 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
pyruvate fermentation to acetone 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
superpathway of phenylethylamine degradation 11 6 2
fatty acid salvage 6 6 1
catechol degradation III (ortho-cleavage pathway) 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
superpathway of taurine degradation 6 4 1
L-isoleucine degradation I 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
4-ethylphenol degradation (anaerobic) 6 1 1
jasmonic acid biosynthesis 19 4 3
myo-inositol degradation I 7 7 1
NAD salvage pathway I (PNC VI cycle) 7 6 1
superpathway of salicylate degradation 7 5 1
fatty acid β-oxidation I (generic) 7 5 1
acetyl-CoA fermentation to butanoate 7 4 1
4-methylcatechol degradation (ortho cleavage) 7 4 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
pyruvate fermentation to butanoate 7 3 1
benzoyl-CoA degradation I (aerobic) 7 3 1
mevalonate pathway I (eukaryotes and bacteria) 7 2 1
mevalonate pathway II (haloarchaea) 7 2 1
2,4-dinitrotoluene degradation 7 1 1
L-valine degradation I 8 5 1
pyruvate fermentation to butanol I 8 3 1
2-deoxy-D-ribose degradation II 8 3 1
mevalonate pathway IV (archaea) 8 2 1
isoprene biosynthesis II (engineered) 8 2 1
mevalonate pathway III (Thermoplasma) 8 2 1
2-methylpropene degradation 8 2 1
androstenedione degradation I (aerobic) 25 6 3
superpathway of glucose and xylose degradation 17 14 2
aromatic compounds degradation via β-ketoadipate 9 7 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
4-oxopentanoate degradation 9 2 1
superpathway of testosterone and androsterone degradation 28 6 3
myo-, chiro- and scyllo-inositol degradation 10 7 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 5 1
3-phenylpropanoate degradation 10 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
methyl tert-butyl ether degradation 10 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 4
toluene degradation III (aerobic) (via p-cresol) 11 7 1
ethylmalonyl-CoA pathway 11 7 1
NAD salvage (plants) 11 6 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 4
L-glutamate degradation VII (to butanoate) 12 4 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 10 1
superpathway of NAD biosynthesis in eukaryotes 14 8 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 5 1
glycerol degradation to butanol 16 9 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 1
mandelate degradation to acetyl-CoA 18 7 1
toluene degradation VI (anaerobic) 18 4 1
sitosterol degradation to androstenedione 18 1 1
superpathway of pentose and pentitol degradation 42 11 2
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 20 1
platensimycin biosynthesis 26 6 1
superpathway of ergosterol biosynthesis I 26 4 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1
superpathway of aerobic toluene degradation 30 11 1
superpathway of aromatic compound degradation via 3-oxoadipate 35 14 1
superpathway of cholesterol biosynthesis 38 4 1
superpathway of L-lysine degradation 43 10 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1