Experiment set4S70 for Rhodopseudomonas palustris CGA009

Compare to:

PM with p-Coumaric acid carbon source

Group: carbon source
Media: PM + p-Coumaric acid (3 mM) + Sodium bicarbonate (10 mM)
Culturing: RPal_CGA009_ML8, Anaerobic, at 30 (C), shaken=0 rpm
By: Yasu on 23-Mar-23
Media components: 12.5 mM Disodium phosphate, 12.5 mM Potassium phosphate monobasic, 1 g/L Ammonium Sulfate, 0.1 mM Sodium thiosulfate pentahydrate, 0.002 g/L 4-Aminobenzoic acid, UW concentrated base (0.02 g/L Nitrilotriacetic acid, 0.0289 g/L Magnesium sulfate, 0.00667 g/L Calcium chloride dihydrate, 1.85e-05 g/L ammonium molybdate tetrahydrate, 0.000698 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L EDTA, 0.001095 g/L Zinc sulfate heptahydrate, 0.000154 g/L Manganese (II) sulfate monohydrate, 3.92e-05 g/L Copper (II) sulfate pentahydrate, 2.5e-05 g/L Cobalt(II) nitrate hexahydrate, 1.77e-05 g/L sodium tetraborate decahydrate)

Specific Phenotypes

For 13 genes in this experiment

For carbon source p-Coumaric acid in Rhodopseudomonas palustris CGA009

For carbon source p-Coumaric acid across organisms

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 2
Butanol Biosynthesis 2
Isoleucine degradation 2
Polyhydroxybutyrate metabolism 2
Valine degradation 2
n-Phenylalkanoic acid degradation 2
Benzoate transport and degradation cluster 1
Central meta-cleavage pathway of aromatic compound degradation 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Nitric oxide synthase 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
benzoate degradation II (aerobic and anaerobic) 1 1 1
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
4-hydroxybenzoate biosynthesis III (plants) 5 5 4
benzoyl-CoA biosynthesis 3 3 2
4-coumarate degradation (anaerobic) 6 5 4
4-coumarate degradation (aerobic) 5 4 3
fatty acid β-oxidation IV (unsaturated, even number) 5 3 3
fatty acid β-oxidation I (generic) 7 5 4
oleate β-oxidation (thioesterase-dependent, yeast) 2 1 1
oleate β-oxidation 35 28 16
2-methyl-branched fatty acid β-oxidation 14 10 6
adipate biosynthesis 5 5 2
adipate degradation 5 5 2
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 2 2
pyruvate fermentation to hexanol (engineered) 11 7 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
fatty acid salvage 6 6 2
pyruvate fermentation to butanol II (engineered) 6 4 2
L-isoleucine degradation I 6 4 2
umbelliferone biosynthesis 3 2 1
valproate β-oxidation 9 5 3
6-gingerol analog biosynthesis (engineered) 6 3 2
propanoate fermentation to 2-methylbutanoate 6 3 2
methyl ketone biosynthesis (engineered) 6 3 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 3
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
ferulate degradation 3 1 1
benzoyl-CoA degradation I (aerobic) 7 5 2
pyruvate fermentation to butanoate 7 4 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
L-valine degradation I 8 6 2
3,4-dichlorobenzoate degradation 4 3 1
4-chlorobenzoate degradation 4 2 1
phenol degradation II (anaerobic) 4 2 1
pyruvate fermentation to butanol I 8 3 2
naringenin biosynthesis (engineered) 4 1 1
xanthohumol biosynthesis 4 1 1
propane degradation I 4 1 1
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 6 2
phenylacetate degradation I (aerobic) 9 5 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
L-glutamate degradation V (via hydroxyglutarate) 10 4 2
3-phenylpropanoate degradation 10 4 2
phaselate biosynthesis 5 1 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
flavonoid biosynthesis 5 1 1
chlorogenic acid biosynthesis II 5 1 1
superpathway of phenylethylamine degradation 11 6 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 7 3
3-chlorobenzoate degradation II (via protocatechuate) 6 3 1
L-glutamate degradation VII (to butanoate) 12 5 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 2
superpathway of glyoxylate cycle and fatty acid degradation 14 12 2
Spodoptera littoralis pheromone biosynthesis 22 4 3
L-tryptophan degradation III (eukaryotic) 15 3 2
protocatechuate degradation I (meta-cleavage pathway) 8 8 1
glycerol degradation to butanol 16 9 2
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 5 2
2-methylpropene degradation 8 2 1
chlorogenic acid biosynthesis I 8 1 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 2
benzoyl-CoA degradation III (anaerobic) 9 7 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 12 2
toluene degradation VI (anaerobic) 18 5 2
avenanthramide biosynthesis 9 1 1
superpathway of vanillin and vanillate degradation 10 8 1
rosmarinic acid biosynthesis I 10 2 1
methyl tert-butyl ether degradation 10 2 1
curcuminoid biosynthesis 10 1 1
gallate degradation III (anaerobic) 11 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
androstenedione degradation I (aerobic) 25 6 2
platensimycin biosynthesis 26 6 2
coumarins biosynthesis (engineered) 13 3 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 21 2
anaerobic aromatic compound degradation (Thauera aromatica) 27 8 2
androstenedione degradation II (anaerobic) 27 4 2
superpathway of testosterone and androsterone degradation 28 6 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 3
superpathway of rosmarinic acid biosynthesis 14 2 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
flavonoid di-C-glucosylation 15 3 1
monolignol biosynthesis 15 1 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 3
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
suberin monomers biosynthesis 20 3 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 20 1