Experiment set4IT092 for Acidovorax sp. GW101-3H11

Compare to:

Ammonium chloride nitrogen source

Group: nitrogen source
Media: RCH2_defined_Glucose_noNitrogen + Ammonium chloride (20 mM), pH=7
Culturing: acidovorax_3H11_ML3a, 24 deep-well microplate; Multitron, Aerobic, at 30 (C), shaken=750 rpm
Growth: about 3.9 generations
By: Mark on 6/10/2015
Media components: 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 20 mM D-Glucose, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)
Growth plate: Nplate2 D1

Specific Phenotypes

For 28 genes in this experiment

For nitrogen source Ammonium chloride in Acidovorax sp. GW101-3H11

For nitrogen source Ammonium chloride across organisms

SEED Subsystems

Subsystem #Specific
Flagellum 3
Flagellar motility 2
Glycerol and Glycerol-3-phosphate Uptake and Utilization 2
Serine-glyoxylate cycle 2
Acetyl-CoA fermentation to Butyrate 1
Alanine biosynthesis 1
Bacterial hemoglobins 1
Benzoate transport and degradation cluster 1
Biphenyl Degradation 1
Branched-Chain Amino Acid Biosynthesis 1
Butanol Biosynthesis 1
D-ribose utilization 1
Entner-Doudoroff Pathway 1
Folate Biosynthesis 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Glycine and Serine Utilization 1
Glycine cleavage system 1
Heat shock dnaK gene cluster extended 1
Isoleucine degradation 1
Methylglyoxal Metabolism 1
One-carbon metabolism by tetrahydropterines 1
Photorespiration (oxidative C2 cycle) 1
Polyhydroxybutyrate metabolism 1
Pyruvate Alanine Serine Interconversions 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
Ribosome activity modulation 1
Ribosome biogenesis bacterial 1
Terminal cytochrome C oxidases 1
Toluene degradation 1
Valine degradation 1
ZZ gjo need homes 1
cAMP signaling in bacteria 1
dTDP-rhamnose synthesis 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-alanine biosynthesis I 2 2 2
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
benzoyl-CoA biosynthesis 3 3 2
superpathway of L-alanine biosynthesis 4 4 2
L-isoleucine degradation I 6 5 3
oleate β-oxidation (thioesterase-dependent, yeast) 2 1 1
ethylene glycol degradation 2 1 1
putrescine degradation I 2 1 1
arsenite to oxygen electron transfer 2 1 1
putrescine degradation V 2 1 1
oleate β-oxidation 35 29 16
fatty acid β-oxidation I (generic) 7 5 3
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 3 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 2 2
L-valine degradation I 8 6 3
pyruvate fermentation to hexanol (engineered) 11 7 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
2-methyl-branched fatty acid β-oxidation 14 10 5
ethanol degradation IV 3 3 1
glycine cleavage 3 3 1
glycine biosynthesis II 3 3 1
CDP-4-dehydro-3,6-dideoxy-D-glucose biosynthesis 3 3 1
ethanol degradation II 3 3 1
pyruvate fermentation to butanol II (engineered) 6 5 2
fatty acid salvage 6 5 2
propanoate fermentation to 2-methylbutanoate 6 5 2
valproate β-oxidation 9 7 3
L-isoleucine biosynthesis V 3 2 1
L-valine degradation II 3 2 1
L-leucine degradation III 3 2 1
L-isoleucine degradation II 3 2 1
putrescine degradation IV 3 2 1
hypotaurine degradation 3 2 1
ethanol degradation III 3 2 1
methyl ketone biosynthesis (engineered) 6 3 2
4-toluenecarboxylate degradation 3 1 1
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
L-leucine degradation V (oxidative Stickland reaction) 3 1 1
L-isoleucine degradation III (oxidative Stickland reaction) 3 1 1
L-valine degradation III (oxidative Stickland reaction) 3 1 1
histamine degradation 3 1 1
resorcinol degradation 3 1 1
arsenite to oxygen electron transfer (via azurin) 3 1 1
benzoyl-CoA degradation I (aerobic) 7 6 2
pyruvate fermentation to butanoate 7 3 2
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast) 12 12 3
L-valine biosynthesis 4 4 1
gondoate biosynthesis (anaerobic) 4 4 1
phytol degradation 4 3 1
aerobic respiration I (cytochrome c) 4 3 1
pyruvate fermentation to butanol I 8 4 2
aerobic respiration II (cytochrome c) (yeast) 4 2 1
fatty acid α-oxidation I (plants) 4 2 1
4-sulfocatechol degradation 4 2 1
4-toluenesulfonate degradation I 4 1 1
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
L-tryptophan degradation X (mammalian, via tryptamine) 4 1 1
4-aminophenol degradation 4 1 1
putrescine degradation III 4 1 1
D-arabinose degradation II 4 1 1
γ-resorcylate degradation II 4 1 1
γ-resorcylate degradation I 4 1 1
palmitate biosynthesis III 29 28 7
tetradecanoate biosynthesis (mitochondria) 25 23 6
palmitate biosynthesis II (type II fatty acid synthase) 31 29 7
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 9 8 2
phenylacetate degradation I (aerobic) 9 5 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 4 2
oleate biosynthesis IV (anaerobic) 14 13 3
superpathway of glyoxylate cycle and fatty acid degradation 14 11 3
superpathway of fatty acids biosynthesis (E. coli) 53 49 11
anteiso-branched-chain fatty acid biosynthesis 34 30 7
odd iso-branched-chain fatty acid biosynthesis 34 30 7
even iso-branched-chain fatty acid biosynthesis 34 30 7
fatty acid elongation -- saturated 5 5 1
superpathway of unsaturated fatty acids biosynthesis (E. coli) 20 18 4
4-hydroxybenzoate biosynthesis III (plants) 5 4 1
8-amino-7-oxononanoate biosynthesis IV 5 4 1
cis-vaccenate biosynthesis 5 4 1
3-phenylpropanoate degradation 10 6 2
L-glutamate degradation V (via hydroxyglutarate) 10 6 2
4-chlorocatechol degradation 5 3 1
octane oxidation 5 3 1
CDP-6-deoxy-D-gulose biosynthesis 5 3 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
mitochondrial NADPH production (yeast) 5 2 1
3-chlorocatechol degradation II (ortho) 5 2 1
3-chlorocatechol degradation I (ortho) 5 2 1
4-nitrophenol degradation I 5 1 1
dopamine degradation 5 1 1
L-leucine degradation IV (reductive Stickland reaction) 5 1 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
4-hydroxyacetophenone degradation 5 1 1
4-nitrophenol degradation II 5 1 1
superpathway of fatty acid biosynthesis II (plant) 43 38 8
8-amino-7-oxononanoate biosynthesis I 11 9 2
superpathway of phenylethylamine degradation 11 6 2
superpathway of branched chain amino acid biosynthesis 17 17 3
(5Z)-dodecenoate biosynthesis I 6 6 1
L-leucine biosynthesis 6 6 1
glyoxylate cycle 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
L-leucine degradation I 6 5 1
(5Z)-dodecenoate biosynthesis II 6 5 1
L-isoleucine biosynthesis IV 6 4 1
stearate biosynthesis IV 6 4 1
3-methyl-branched fatty acid α-oxidation 6 3 1
6-gingerol analog biosynthesis (engineered) 6 3 1
petroselinate biosynthesis 6 2 1
Fe(II) oxidation 6 2 1
L-glutamate degradation VII (to butanoate) 12 3 2
alkane oxidation 6 1 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 2
noradrenaline and adrenaline degradation 13 4 2
streptorubin B biosynthesis 34 20 5
L-isoleucine biosynthesis I (from threonine) 7 7 1
superpathway of glycol metabolism and degradation 7 5 1
L-isoleucine biosynthesis III 7 4 1
4,5-dichlorocatechol degradation 7 4 1
serotonin degradation 7 3 1
2,4,6-trichlorophenol degradation 7 3 1
chlorosalicylate degradation 7 3 1
ceramide degradation by α-oxidation 7 2 1
limonene degradation IV (anaerobic) 7 1 1
Spodoptera littoralis pheromone biosynthesis 22 4 3
biotin biosynthesis I 15 13 2
L-tryptophan degradation III (eukaryotic) 15 7 2
superpathway of fatty acid biosynthesis I (E. coli) 16 15 2
glycerol degradation to butanol 16 10 2
L-isoleucine biosynthesis II 8 5 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 4 1
3,5-dichlorocatechol degradation 8 4 1
superpathway of ornithine degradation 8 3 1
superpathway of CDP-glucose-derived O-antigen building blocks biosynthesis 8 3 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 2
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-methylpropene degradation 8 2 1
2-allylmalonyl-CoA biosynthesis 8 2 1
aromatic biogenic amine degradation (bacteria) 8 1 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 5 2
folate transformations III (E. coli) 9 7 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 10 2
3,4,6-trichlorocatechol degradation 9 5 1
Entner-Doudoroff pathway II (non-phosphorylative) 9 4 1
1,4-dichlorobenzene degradation 9 4 1
2,4,5-trichlorophenoxyacetate degradation 9 3 1
toluene degradation VI (anaerobic) 18 4 2
pentachlorophenol degradation 10 4 1
methyl tert-butyl ether degradation 10 2 1
pinoresinol degradation 10 2 1
folate transformations II (plants) 11 8 1
γ-hexachlorocyclohexane degradation 11 6 1
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation 11 4 1
gallate degradation III (anaerobic) 11 4 1
superpathway of glyoxylate bypass and TCA 12 10 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
androstenedione degradation I (aerobic) 25 6 2
superpathway of L-isoleucine biosynthesis I 13 13 1
folate transformations I 13 7 1
superpathway of L-arginine and L-ornithine degradation 13 6 1
platensimycin biosynthesis 26 7 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 19 2
androstenedione degradation II (anaerobic) 27 4 2
superpathway of testosterone and androsterone degradation 28 6 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 3
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
superpathway of L-threonine metabolism 18 10 1
streptomycin biosynthesis 18 2 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 23 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 17 1
mycolate biosynthesis 205 21 5
superpathway of pentose and pentitol degradation 42 14 1
superpathway of mycolate biosynthesis 239 22 5