Experiment set4IT051 for Pseudomonas fluorescens FW300-N2E3

Compare to:

LB with methylglyoxal 0.009 vol%

Group: stress
Media: LB + methylglyoxal (0.009 vol%)
Culturing: pseudo3_N2E3_ML2, 48 well microplate; Tecan Infinite F200, Aerobic, at 25 (C), shaken=orbital
By: Jayashree on 6/26/2014
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: 958 B1,B2

Specific Phenotypes

For 20 genes in this experiment

For stress methylglyoxal in Pseudomonas fluorescens FW300-N2E3

For stress methylglyoxal across organisms

SEED Subsystems

Subsystem #Specific
Glutathione-dependent pathway of formaldehyde detoxification 2
Potassium homeostasis 2
Sodium Hydrogen Antiporter 2
Bacterial RNA-metabolizing Zn-dependent hydrolases 1
Conserved gene cluster associated with Met-tRNA formyltransferase 1
DNA-replication 1
DNA repair, UvrABC system 1
DNA repair, bacterial 1
Glutathione-regulated potassium-efflux system and associated functions 1
Glutathione: Non-redox reactions 1
Methylglyoxal Metabolism 1
Oxidative stress 1
Photorespiration (oxidative C2 cycle) 1
Purine conversions 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
acetaldehyde biosynthesis I 1 1 1
adenosine nucleotides degradation III 1 1 1
formaldehyde oxidation II (glutathione-dependent) 3 3 2
methylglyoxal degradation I 3 2 2
methylglyoxal degradation VIII 3 2 2
ethanol degradation I 2 2 1
superoxide radicals degradation 2 2 1
pyruvate fermentation to ethanol II 2 1 1
methanol oxidation to formaldehyde IV 2 1 1
ethanol degradation II 3 3 1
ethanol degradation IV 3 3 1
L-valine degradation II 3 2 1
pyruvate fermentation to ethanol III 3 2 1
pyruvate fermentation to ethanol I 3 2 1
L-leucine degradation III 3 2 1
L-isoleucine degradation II 3 2 1
L-methionine degradation III 3 1 1
reactive oxygen species degradation 4 4 1
queuosine biosynthesis I (de novo) 4 4 1
phytol degradation 4 3 1
superpathway of methylglyoxal degradation 8 4 2
L-phenylalanine degradation III 4 2 1
L-tyrosine degradation III 4 2 1
salidroside biosynthesis 4 1 1
ethanolamine utilization 5 5 1
acetylene degradation (anaerobic) 5 4 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
protein S-nitrosylation and denitrosylation 5 3 1
(S)-propane-1,2-diol degradation 5 2 1
phenylethanol biosynthesis 5 1 1
superpathway of C1 compounds oxidation to CO2 12 5 2
noradrenaline and adrenaline degradation 13 4 2
3-methylbutanol biosynthesis (engineered) 7 6 1
serotonin degradation 7 3 1
butanol and isobutanol biosynthesis (engineered) 8 3 1
superpathway of fermentation (Chlamydomonas reinhardtii) 9 5 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 1
L-tryptophan degradation V (side chain pathway) 13 1 1
mixed acid fermentation 16 12 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 1
heterolactic fermentation 18 16 1
superpathway of anaerobic sucrose degradation 19 15 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of N-acetylneuraminate degradation 22 15 1