Experiment set4IT036 for Sphingomonas koreensis DSMZ 15582

Compare to:

LB with Choline chloride 40 mM

Group: stress
Media: LB + Choline chloride (40 mM)
Culturing: korea_ML2, 48 well microplate; Tecan Infinite F200, Aerobic, at 28 (C), shaken=orbital
By: Mark on 1/26/2015
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: 1116 C1,C2

Specific Phenotypes

For 3 genes in this experiment

For stress Choline chloride in Sphingomonas koreensis DSMZ 15582

For stress Choline chloride across organisms

SEED Subsystems

Subsystem #Specific
Isoleucine degradation 3
Valine degradation 3
Leucine Degradation and HMG-CoA Metabolism 2
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Polyhydroxybutyrate metabolism 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
2-oxoisovalerate decarboxylation to isobutanoyl-CoA 3 3 2
benzoyl-CoA biosynthesis 3 3 1
acrylate degradation II 3 1 1
2-methyl-branched fatty acid β-oxidation 14 9 3
adipate biosynthesis 5 4 1
adipate degradation 5 4 1
propanoyl-CoA degradation II 5 3 1
acrylate degradation I 5 3 1
fatty acid β-oxidation IV (unsaturated, even number) 5 3 1
glutaryl-CoA degradation 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
oleate β-oxidation 35 30 6
fatty acid salvage 6 5 1
β-alanine biosynthesis II 6 4 1
L-isoleucine degradation I 6 4 1
pyruvate fermentation to butanol II (engineered) 6 4 1
propanoate fermentation to 2-methylbutanoate 6 3 1
methyl ketone biosynthesis (engineered) 6 3 1
fatty acid β-oxidation I (generic) 7 5 1
pyruvate fermentation to butanoate 7 3 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
benzoyl-CoA degradation I (aerobic) 7 2 1
L-valine degradation I 8 5 1
pyruvate fermentation to butanol I 8 3 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 12 2
valproate β-oxidation 9 6 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
phenylacetate degradation I (aerobic) 9 3 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 1
superpathway of coenzyme A biosynthesis II (plants) 10 8 1
3-phenylpropanoate degradation 10 6 1
L-glutamate degradation V (via hydroxyglutarate) 10 4 1
superpathway of phenylethylamine degradation 11 4 1
gallate degradation III (anaerobic) 11 3 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
L-glutamate degradation VII (to butanoate) 12 4 1
3-hydroxypropanoate cycle 13 9 1
glyoxylate assimilation 13 6 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 1
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 12 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
L-tryptophan degradation III (eukaryotic) 15 6 1
glycerol degradation to butanol 16 10 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
superpathway of the 3-hydroxypropanoate cycle 18 10 1
toluene degradation VI (anaerobic) 18 4 1
platensimycin biosynthesis 26 6 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1