Experiment set4IT021 for Rhodanobacter denitrificans FW104-10B01

Compare to:

R2A with lithium chloride 15.625 mM

Group: stress
Media: R2A + Lithium chloride (15.625 mM)
Culturing: rhodanobacter_10B01_ML12, 96 deep-well microplate; 0.8 mL volume, Aerobic, at 30 (C), shaken=700 rpm
By: Hans Carlson and Trenton Owens on 06/22/2021
Media components: 0.5 g/L Bacto Peptone, 0.5 g/L casamino acids, 0.5 g/L Yeast Extract, 0.5 g/L D-Glucose, 0.5 g/L Starch, 0.3 g/L Potassium phosphate dibasic, 0.05 g/L Magnesium Sulfate Heptahydrate, 0.3 g/L Sodium pyruvate
Growth plate: 3 G7

Specific Phenotypes

For 12 genes in this experiment

For stress Lithium chloride in Rhodanobacter denitrificans FW104-10B01

For stress Lithium chloride across organisms

SEED Subsystems

Subsystem #Specific
Ethanolamine utilization 2
Fermentations: Lactate 2
Fermentations: Mixed acid 2
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 2
Threonine anaerobic catabolism gene cluster 2
DNA Repair Base Excision 1
Glycolysis and Gluconeogenesis 1
Glycolysis and Gluconeogenesis, including Archaeal enzymes 1
MLST 1
Propanediol utilization 1
Protein chaperones 1
Pyruvate metabolism I: anaplerotic reactions, PEP 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
acetate and ATP formation from acetyl-CoA I 2 2 2
pyruvate fermentation to acetate II 3 3 2
superpathway of acetate utilization and formation 3 3 2
pyruvate fermentation to acetate I 3 2 2
pyruvate fermentation to acetate VII 3 2 2
pyruvate fermentation to acetate IV 3 2 2
pyruvate fermentation to acetate and (S)-lactate I 4 3 2
pyruvate fermentation to acetate and lactate II 4 2 2
sulfoacetaldehyde degradation I 2 1 1
glycine degradation (reductive Stickland reaction) 2 1 1
(S)-propane-1,2-diol degradation 5 3 2
acetylene degradation (anaerobic) 5 3 2
ethanolamine utilization 5 3 2
L-threonine degradation I 6 5 2
methanogenesis from acetate 6 2 2
acetyl-CoA fermentation to butanoate 7 5 2
lactate fermentation to acetate, CO2 and hydrogen (Desulfovibrionales) 8 2 2
sulfolactate degradation II 4 1 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 2
superpathway of fermentation (Chlamydomonas reinhardtii) 9 5 2
superpathway of L-alanine fermentation (Stickland reaction) 9 4 2
Bifidobacterium shunt 15 14 3
L-lysine fermentation to acetate and butanoate 10 3 2
gallate degradation III (anaerobic) 11 3 2
superpathway of sulfolactate degradation 6 2 1
superpathway of taurine degradation 6 1 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 3
(S)-lactate fermentation to propanoate, acetate and hydrogen 13 5 2
superpathway of N-acetylneuraminate degradation 22 16 3
mixed acid fermentation 16 12 2
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 2
heterolactic fermentation 18 15 2
superpathway of L-threonine metabolism 18 13 2
reductive glycine pathway of autotrophic CO2 fixation 9 5 1
glycolysis V (Pyrococcus) 10 7 1
superpathway of methanogenesis 21 2 2
glycolysis II (from fructose 6-phosphate) 11 11 1
purine nucleobases degradation II (anaerobic) 24 9 2
glycolysis I (from glucose 6-phosphate) 13 12 1
gluconeogenesis I 13 11 1
purine nucleobases degradation I (anaerobic) 15 3 1
superpathway of glycolysis and the Entner-Doudoroff pathway 17 16 1
superpathway of hexitol degradation (bacteria) 18 14 1
gluconeogenesis II (Methanobacterium thermoautotrophicum) 18 8 1
superpathway of anaerobic sucrose degradation 19 16 1
superpathway of L-lysine degradation 43 7 2
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 23 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 25 1