Experiment set4H32 for Shewanella amazonensis SB2B

Compare to:

LB with Fusidic acid sodium salt 0.0625 mg/ml

Group: stress
Media: LB + Fusidic acid sodium salt (0.0625 mg/ml)
Culturing: SB2B_ML5, 48 well microplate; Tecan Infinite F200, Aerobic, at 37 (C), shaken=orbital
By: Adam on 7/26/2013
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: 590 E5,E6

Specific Phenotypes

For 19 genes in this experiment

For stress Fusidic acid sodium salt in Shewanella amazonensis SB2B

For stress Fusidic acid sodium salt across organisms

SEED Subsystems

Subsystem #Specific
DNA repair, bacterial MutL-MutS system 2
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
DNA repair, bacterial 1
Glutathione: Redox cycle 1
Isoleucine degradation 1
Phosphate metabolism 1
Polyhydroxybutyrate metabolism 1
Type IV pilus 1
Valine degradation 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
icosapentaenoate biosynthesis IV (bacteria) 1 1 1
benzoyl-CoA biosynthesis 3 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 3 3
fatty acid β-oxidation I (generic) 7 6 4
polyphosphate metabolism 2 2 1
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
oleate β-oxidation 35 33 16
adipate degradation 5 4 2
adipate biosynthesis 5 3 2
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 2 2
pyruvate fermentation to hexanol (engineered) 11 7 4
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 4
2-methyl-branched fatty acid β-oxidation 14 9 5
fatty acid salvage 6 5 2
valproate β-oxidation 9 6 3
pyruvate fermentation to butanol II (engineered) 6 4 2
L-isoleucine degradation I 6 4 2
glutathione-peroxide redox reactions 3 2 1
propanoate fermentation to 2-methylbutanoate 6 3 2
methyl ketone biosynthesis (engineered) 6 3 2
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
pyruvate fermentation to butanoate 7 3 2
benzoyl-CoA degradation I (aerobic) 7 2 2
gondoate biosynthesis (anaerobic) 4 4 1
L-valine degradation I 8 6 2
pyruvate fermentation to butanol I 8 3 2
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 7
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 9 9 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
phenylacetate degradation I (aerobic) 9 2 2
oleate biosynthesis IV (anaerobic) 14 13 3
superpathway of fatty acids biosynthesis (E. coli) 53 50 11
superpathway of unsaturated fatty acids biosynthesis (E. coli) 20 20 4
cis-vaccenate biosynthesis 5 5 1
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 1
8-amino-7-oxononanoate biosynthesis IV 5 4 1
fatty acid elongation -- saturated 5 4 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
3-phenylpropanoate degradation 10 4 2
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
superpathway of fatty acid biosynthesis II (plant) 43 37 8
8-amino-7-oxononanoate biosynthesis I 11 10 2
superpathway of phenylethylamine degradation 11 3 2
anteiso-branched-chain fatty acid biosynthesis 34 24 6
even iso-branched-chain fatty acid biosynthesis 34 24 6
odd iso-branched-chain fatty acid biosynthesis 34 24 6
(5Z)-dodecenoate biosynthesis I 6 6 1
ppGpp metabolism 6 6 1
stearate biosynthesis II (bacteria and plants) 6 5 1
(5Z)-dodecenoate biosynthesis II 6 5 1
6-gingerol analog biosynthesis (engineered) 6 2 1
L-glutamate degradation VII (to butanoate) 12 3 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 2
streptorubin B biosynthesis 34 20 5
superpathway of glyoxylate cycle and fatty acid degradation 14 11 2
Spodoptera littoralis pheromone biosynthesis 22 4 3
biotin biosynthesis I 15 14 2
L-tryptophan degradation III (eukaryotic) 15 4 2
superpathway of fatty acid biosynthesis I (E. coli) 16 13 2
glycerol degradation to butanol 16 9 2
2-methylpropene degradation 8 2 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 2
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 6 2
toluene degradation VI (anaerobic) 18 3 2
methyl tert-butyl ether degradation 10 2 1
gallate degradation III (anaerobic) 11 3 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
androstenedione degradation I (aerobic) 25 6 2
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
1-butanol autotrophic biosynthesis (engineered) 27 20 2
androstenedione degradation II (anaerobic) 27 4 2
superpathway of testosterone and androsterone degradation 28 6 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 3
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 21 1
mycolate biosynthesis 205 20 4
superpathway of mycolate biosynthesis 239 21 4