Experiment set4H10 for Pseudomonas stutzeri RCH2

Compare to:

LB with Cephalothin sodium salt 0.04 mg/ml

Group: stress
Media: LB + Cephalothin sodium salt (0.04 mg/ml)
Culturing: psRCH2_ML7, 48 well microplate; Tecan Infinite F200, Aerobic, at 30 (C), shaken=orbital
By: Kelly on 6/24/2013
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: 558 B1,B2

Specific Phenotypes

For 60 genes in this experiment

For stress Cephalothin sodium salt in Pseudomonas stutzeri RCH2

For stress Cephalothin sodium salt across organisms

SEED Subsystems

Subsystem #Specific
Bacterial Chemotaxis 3
Flagellum 3
Flagellar motility 2
ABC transporter branched-chain amino acid (TC 3.A.1.4.1) 1
Alginate metabolism 1
Cobalt-zinc-cadmium resistance 1
Coenzyme A Biosynthesis 1
Cyanobacterial Circadian Clock 1
Di-Inositol-Phosphate biosynthesis 1
Ectoine biosynthesis and regulation 1
Fructose utilization 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Glycine cleavage system 1
Iron acquisition in Vibrio 1
Lysine degradation 1
Malonate decarboxylase 1
Mannose Metabolism 1
Protein chaperones 1
SigmaB stress responce regulation 1
Ubiquinone Biosynthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
β-alanine biosynthesis III 1 1 1
fructose degradation 1 1 1
myo-inositol biosynthesis 2 1 1
fatty acid biosynthesis initiation (type II) 3 3 1
malonate degradation I (biotin-independent) 3 3 1
L-serine biosynthesis I 3 3 1
D-myo-inositol (1,4,5)-trisphosphate degradation 3 1 1
CDP-diacylglycerol biosynthesis II 4 4 1
superpathway of L-serine and glycine biosynthesis I 4 4 1
CDP-diacylglycerol biosynthesis I 4 4 1
GDP-mannose biosynthesis 4 4 1
fatty acid biosynthesis initiation (mitochondria) 4 2 1
fatty acid biosynthesis initiation (plant mitochondria) 4 1 1
D-galactosamine and N-acetyl-D-galactosamine degradation 4 1 1
ectoine biosynthesis 5 5 1
superpathway of fatty acid biosynthesis initiation 5 4 1
CDP-diacylglycerol biosynthesis III 5 3 1
galactitol degradation 5 2 1
N-acetyl-D-galactosamine degradation 5 1 1
lactose degradation I 5 1 1
phosphatidylglycerol biosynthesis I 6 6 1
phosphatidylglycerol biosynthesis II 6 6 1
superpathway of D-myo-inositol (1,4,5)-trisphosphate metabolism 6 1 1
phytate degradation I 14 3 2
pederin biosynthesis 14 2 2
ubiquinol-8 biosynthesis (early decarboxylation) 8 6 1
superpathway of coenzyme A biosynthesis I (bacteria) 9 9 1
superpathway of sulfate assimilation and cysteine biosynthesis 9 9 1
bryostatin biosynthesis 19 2 2
peptidoglycan recycling II 10 7 1
colanic acid building blocks biosynthesis 11 10 1
mycobactin biosynthesis 11 1 1
superpathway of ubiquinol-8 biosynthesis (early decarboxylation) 12 10 1
superpathway of phospholipid biosynthesis III (E. coli) 12 10 1
superpathway of cardiolipin biosynthesis (bacteria) 13 9 1
peptidoglycan recycling I 14 9 1
superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis 14 9 1
superpathway of fatty acid biosynthesis I (E. coli) 16 15 1
type I lipoteichoic acid biosynthesis (S. aureus) 17 5 1
superpathway of hexitol degradation (bacteria) 18 13 1
mupirocin biosynthesis 26 2 1
superpathway of phospholipid biosynthesis II (plants) 28 10 1
corallopyronin A biosynthesis 30 2 1
superpathway of fatty acid biosynthesis II (plant) 43 38 1
superpathway of fatty acids biosynthesis (E. coli) 53 51 1
superpathway of chorismate metabolism 59 44 1