Experiment set4H10 for Phaeobacter inhibens DSM 17395

Compare to:

marine broth with Sisomicin sulfate salt 0.005 mg/ml

Group: stress
Media: marine_broth_2216 + Sisomicin sulfate salt (0.005 mg/ml)
Culturing: Phaeo_ML1, 48 well microplate; Tecan Infinite F200, Aerobic, at 25 (C), shaken=orbital
By: Jordan on 8/6/2013
Media components: 5 g/L Bacto Peptone, 1 g/L Yeast Extract, 0.1 g/L Ferric citrate, 19.45 g/L Sodium Chloride, 5.9 g/L Magnesium chloride hexahydrate, 3.24 g/L Magnesium sulfate, 1.8 g/L Calcium chloride, 0.55 g/L Potassium Chloride, 0.16 g/L Sodium bicarbonate, 0.08 g/L Potassium bromide, 34 mg/L Strontium chloride, 22 mg/L Boric Acid, 4 mg/L Sodium metasilicate, 2.4 mg/L sodium fluoride, 8 mg/L Disodium phosphate
Growth plate: 622 B1,B2

Specific Phenotypes

For 50 genes in this experiment

For stress Sisomicin sulfate salt in Phaeobacter inhibens DSM 17395

For stress Sisomicin sulfate salt across organisms

SEED Subsystems

Subsystem #Specific
Polyamine Metabolism 4
Heat shock dnaK gene cluster extended 3
Ribosome biogenesis bacterial 3
Isobutyryl-CoA to Propionyl-CoA Module 2
Proteasome bacterial 2
Protein degradation 2
Proteolysis in bacteria, ATP-dependent 2
Valine degradation 2
tRNA processing 2
Acetyl-CoA fermentation to Butyrate 1
Adenosyl nucleosidases 1
Biotin biosynthesis 1
Branched-Chain Amino Acid Biosynthesis 1
Conserved gene cluster associated with Met-tRNA formyltransferase 1
Deoxyribose and Deoxynucleoside Catabolism 1
Flagellum 1
Flagellum in Campylobacter 1
Glutathione-dependent pathway of formaldehyde detoxification 1
Isoleucine degradation 1
Peptidyl-prolyl cis-trans isomerase 1
Phosphate metabolism 1
Photorespiration (oxidative C2 cycle) 1
Polyhydroxybutyrate metabolism 1
Potassium homeostasis 1
Purine conversions 1
Ribonucleotide reduction 1
Ribosomal protein S12p Asp methylthiotransferase 1
Universal GTPases 1
ZZ gjo need homes 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
benzoyl-CoA biosynthesis 3 3 3
purine deoxyribonucleosides degradation I 4 3 3
purine ribonucleosides degradation 6 5 4
purine deoxyribonucleosides degradation II 3 2 2
2-methyl-branched fatty acid β-oxidation 14 10 9
oleate β-oxidation 35 30 22
adipate degradation 5 5 3
fatty acid β-oxidation II (plant peroxisome) 5 3 3
fatty acid β-oxidation I (generic) 7 5 4
valproate β-oxidation 9 6 5
fatty acid salvage 6 6 3
guanosine deoxyribonucleotides de novo biosynthesis I 2 2 1
adenine and adenosine salvage I 2 2 1
glutathione degradation (DUG pathway) 2 2 1
adenosine deoxyribonucleotides de novo biosynthesis I 2 2 1
guanine and guanosine salvage I 2 2 1
glycolate and glyoxylate degradation II 2 2 1
xanthine and xanthosine salvage 2 2 1
guanosine deoxyribonucleotides de novo biosynthesis II 4 3 2
adenosine deoxyribonucleotides de novo biosynthesis II 4 3 2
adenine and adenosine salvage III 4 3 2
L-isoleucine degradation I 6 4 3
propanoate fermentation to 2-methylbutanoate 6 3 3
β-alanine degradation II 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
β-alanine degradation I 2 1 1
pseudouridine degradation 2 1 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 5
superpathway of purine deoxyribonucleosides degradation 7 6 3
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 3
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 2
adipate biosynthesis 5 4 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
glutaryl-CoA degradation 5 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 3 2
4-hydroxybenzoate biosynthesis III (plants) 5 2 2
pyruvate fermentation to hexanol (engineered) 11 7 4
methylglyoxal degradation VIII 3 3 1
pyrimidine deoxyribonucleosides degradation 3 3 1
ketolysis 3 3 1
formaldehyde oxidation II (glutathione-dependent) 3 3 1
phenylacetate degradation I (aerobic) 9 6 3
pyruvate fermentation to butanol II (engineered) 6 4 2
polyhydroxybutanoate biosynthesis 3 2 1
superpathway of guanine and guanosine salvage 3 2 1
methylglyoxal degradation I 3 2 1
methyl ketone biosynthesis (engineered) 6 3 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 3
adenine and adenosine salvage V 3 1 1
3-phenylpropanoate degradation 10 4 3
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli) 14 12 4
superpathway of adenosine nucleotides de novo biosynthesis II 7 6 2
superpathway of glyoxylate cycle and fatty acid degradation 14 10 4
pyruvate fermentation to butanoate 7 3 2
benzoyl-CoA degradation I (aerobic) 7 3 2
purine nucleotides degradation II (aerobic) 11 10 3
superpathway of phenylethylamine degradation 11 6 3
guanosine nucleotides degradation III 4 4 1
inosine 5'-phosphate degradation 4 4 1
superpathway of guanosine nucleotides de novo biosynthesis II 8 7 2
(2S)-ethylmalonyl-CoA biosynthesis 4 3 1
L-valine degradation I 8 5 2
chitin deacetylation 4 2 1
pyruvate fermentation to butanol I 8 3 2
2-methylpropene degradation 8 2 2
pyrimidine deoxyribonucleotides de novo biosynthesis I 9 9 2
pyrimidine deoxyribonucleotides de novo biosynthesis III 9 8 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 2
superpathway of purine nucleotide salvage 14 13 3
superpathway of adenosine nucleotides de novo biosynthesis I 5 5 1
adenosine nucleotides degradation II 5 4 1
propanoyl-CoA degradation II 5 3 1
ketogenesis 5 3 1
L-glutamate degradation V (via hydroxyglutarate) 10 4 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
nucleoside and nucleotide degradation (archaea) 10 3 2
androstenedione degradation I (aerobic) 25 6 5
methyl tert-butyl ether degradation 10 2 2
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
pyruvate fermentation to acetone 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
isopropanol biosynthesis (engineered) 5 1 1
superpathway of testosterone and androsterone degradation 28 6 5
superpathway of pyrimidine deoxyribonucleosides degradation 6 6 1
L-leucine biosynthesis 6 6 1
superpathway of guanosine nucleotides de novo biosynthesis I 6 6 1
γ-glutamyl cycle 6 5 1
glyoxylate cycle 6 5 1
L-glutamate degradation VII (to butanoate) 12 4 2
6-gingerol analog biosynthesis (engineered) 6 2 1
nucleoside and nucleotide degradation (halobacteria) 6 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 7
fluoroacetate and fluorothreonine biosynthesis 6 1 1
4-ethylphenol degradation (anaerobic) 6 1 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
superpathway of purine nucleotides de novo biosynthesis II 26 23 4
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 2
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 7
androstenedione degradation II (anaerobic) 27 4 4
myo-inositol degradation I 7 7 1
pyrimidine deoxyribonucleotides de novo biosynthesis IV 7 6 1
ureide biosynthesis 7 6 1
3-methylbutanol biosynthesis (engineered) 7 6 1
acetyl-CoA fermentation to butanoate 7 4 1
superpathway of glycol metabolism and degradation 7 4 1
D-xylose degradation IV 7 3 1
mevalonate pathway II (haloarchaea) 7 2 1
mevalonate pathway I (eukaryotes and bacteria) 7 2 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 2
2,4-dinitrotoluene degradation 7 1 1
Spodoptera littoralis pheromone biosynthesis 22 3 3
L-tryptophan degradation III (eukaryotic) 15 5 2
pyrimidine deoxyribonucleotides biosynthesis from CTP 8 6 1
glycerol degradation to butanol 16 9 2
L-arabinose degradation IV 8 4 1
superpathway of methylglyoxal degradation 8 3 1
2-deoxy-D-ribose degradation II 8 3 1
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 2
mevalonate pathway III (Thermoplasma) 8 2 1
mevalonate pathway IV (archaea) 8 2 1
isoprene biosynthesis II (engineered) 8 2 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 2
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 2
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 2
platensimycin biosynthesis 26 6 3
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis 18 17 2
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 2
toluene degradation VI (anaerobic) 18 4 2
4-oxopentanoate degradation 9 2 1
myo-, chiro- and scyllo-inositol degradation 10 7 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 5 1
L-lysine fermentation to acetate and butanoate 10 3 1
superpathway of purine nucleotides de novo biosynthesis I 21 21 2
ethylmalonyl-CoA pathway 11 7 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 2
superpathway of histidine, purine, and pyrimidine biosynthesis 46 42 4
superpathway of glyoxylate bypass and TCA 12 9 1
superpathway of C1 compounds oxidation to CO2 12 4 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
superpathway of cholesterol degradation III (oxidase) 49 5 4
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 20 2
1-butanol autotrophic biosynthesis (engineered) 27 19 2
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered) 14 7 1
salinosporamide A biosynthesis 15 3 1
superpathway of branched chain amino acid biosynthesis 17 17 1
arsenic detoxification (mammals) 17 8 1
sitosterol degradation to androstenedione 18 1 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 20 1
superpathway of ergosterol biosynthesis I 26 4 1
superpathway of cholesterol biosynthesis 38 4 1
superpathway of pentose and pentitol degradation 42 11 1
superpathway of L-lysine degradation 43 10 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 21 1