Experiment set3IT068 for Desulfovibrio vulgaris Miyazaki F

Compare to:

MoYLS4 with Vancomycin Hydrochloride Hydrate 0.5 mg/ml

Group: stress
Media: MoYLS4 + Vancomycin Hydrochloride Hydrate (0.5 mg/ml), pH=7.2
Culturing: Miya_ML3_a, 24 deep-well microplate, Anaerobic, at 30 (C), shaken=0 rpm
By: Jen on 11/31/2014
Media components: 1 g/L Yeast Extract, 30 mM Sodium sulfate, 60 mM Sodium D,L-Lactate, 20 mM Ammonium chloride, 30 mM Tris hydrochloride, 0.12 mM EDTA, 1 mM Sodium sulfide nonahydrate, 8 mM Magnesium chloride hexahydrate, 0.6 mM Calcium chloride, 2 mM Potassium phosphate dibasic, 60 uM Iron (II) chloride tetrahydrate, 15 uM Manganese (II) chloride tetrahydrate, 7.8 uM Cobalt chloride hexahydrate, 9 uM Zinc chloride, 1.26 uM Sodium molybdate, 1.92 uM Boric Acid, 2.28 uM Nickel (II) sulfate hexahydrate, 0.06 uM copper (II) chloride dihydrate, 0.21 uM Sodium selenite pentahydrate, 0.144 uM Sodium tungstate dihydrate, Thauer's vitamin mix (0.01 mg/L Pyridoxine HCl, 0.005 mg/L 4-Aminobenzoic acid, 0.005 mg/L Lipoic acid, 0.005 mg/L Nicotinic Acid, 0.005 mg/L Riboflavin, 0.005 mg/L Thiamine HCl, 0.005 mg/L calcium pantothenate, 0.002 mg/L biotin, 0.002 mg/L Folic Acid, 0.0001 mg/L Cyanocobalamin, 0.2 mg/L Choline chloride)

Specific Phenotypes

For 14 genes in this experiment

For stress Vancomycin Hydrochloride Hydrate in Desulfovibrio vulgaris Miyazaki F

For stress Vancomycin Hydrochloride Hydrate across organisms

SEED Subsystems

Subsystem #Specific
ABC transporter oligopeptide (TC 3.A.1.5.1) 1
Capsular Polysaccharide (CPS) of Campylobacter 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Peptidoglycan Biosynthesis 1
Proteasome bacterial 1
Proteolysis in bacteria, ATP-dependent 1
Sex pheromones in Enterococcus faecalis and other Firmicutes 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
long-chain fatty acid activation 1 1 1
L-glutamate degradation II 2 2 1
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
L-aspartate degradation III (anaerobic) 3 2 1
L-aspartate degradation II (aerobic) 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
alkane biosynthesis II 3 1 1
oleate biosynthesis I (plants) 3 1 1
phytol degradation 4 3 1
superpathway of L-aspartate and L-asparagine biosynthesis 4 2 1
phosphatidylcholine acyl editing 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
wax esters biosynthesis II 4 1 1
sporopollenin precursors biosynthesis 18 4 4
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
octane oxidation 5 2 1
stearate biosynthesis II (bacteria and plants) 6 5 1
stearate biosynthesis IV 6 4 1
peptidoglycan maturation (meso-diaminopimelate containing) 12 3 2
L-canavanine degradation II 6 1 1
fatty acid salvage 6 1 1
stearate biosynthesis I (animals) 6 1 1
6-gingerol analog biosynthesis (engineered) 6 1 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
suberin monomers biosynthesis 20 2 2
superpathway of fatty acid biosynthesis II (plant) 43 37 4
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 1 1
peptidoglycan biosynthesis IV (Enterococcus faecium) 17 12 1
peptidoglycan biosynthesis II (staphylococci) 17 12 1
superpathway of fatty acids biosynthesis (E. coli) 53 47 2
palmitate biosynthesis III 29 21 1
oleate β-oxidation 35 1 1