Experiment set3IT066 for Burkholderia phytofirmans PsJN

Compare to:

L-Phenylalanine nitrogen source

Group: nitrogen source
Media: RCH2_defined_Glucose_noNitrogen + L-Phenylalanine (20 mM), pH=7
Culturing: BFirm_ML3, 24 deep-well microplate; Multitron, Aerobic, at 30 (C), shaken=750 rpm
Growth: about 5.0 generations
By: Mark on 1/27/2016
Media components: 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 20 mM D-Glucose, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)
Growth plate: Plate 1 C6

Specific Phenotypes

For 7 genes in this experiment

For nitrogen source L-Phenylalanine in Burkholderia phytofirmans PsJN

For nitrogen source L-Phenylalanine across organisms

SEED Subsystems

Subsystem #Specific
ABC transporter branched-chain amino acid (TC 3.A.1.4.1) 3
Aromatic Amin Catabolism 1
Aromatic amino acid interconversions with aryl acids 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
ethanol degradation IV 3 3 1
ethanol degradation II 3 3 1
benzoyl-CoA biosynthesis 3 3 1
ethanol degradation III 3 2 1
hypotaurine degradation 3 2 1
histamine degradation 3 1 1
phytol degradation 4 3 1
fatty acid α-oxidation I (plants) 4 2 1
L-tryptophan degradation X (mammalian, via tryptamine) 4 2 1
putrescine degradation III 4 2 1
phenylacetate degradation I (aerobic) 9 9 2
2-methyl-branched fatty acid β-oxidation 14 9 3
adipate degradation 5 5 1
adipate biosynthesis 5 4 1
fatty acid β-oxidation IV (unsaturated, even number) 5 3 1
octane oxidation 5 3 1
mitochondrial NADPH production (yeast) 5 3 1
fatty acid β-oxidation II (plant peroxisome) 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
dopamine degradation 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
superpathway of phenylethylamine degradation 11 11 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 2
3-methyl-branched fatty acid α-oxidation 6 3 1
methyl ketone biosynthesis (engineered) 6 3 1
alkane oxidation 6 1 1
noradrenaline and adrenaline degradation 13 4 2
benzoyl-CoA degradation I (aerobic) 7 6 1
fatty acid β-oxidation I (generic) 7 5 1
serotonin degradation 7 3 1
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 1
ceramide degradation by α-oxidation 7 2 1
limonene degradation IV (anaerobic) 7 1 1
superpathway of NAD/NADP - NADH/NADPH interconversion (yeast) 8 6 1
aromatic biogenic amine degradation (bacteria) 8 4 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
valproate β-oxidation 9 6 1
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 5 1
benzoyl-CoA degradation III (anaerobic) 9 3 1
3-phenylpropanoate degradation 10 5 1
Spodoptera littoralis pheromone biosynthesis 22 4 2
oleate β-oxidation 35 29 3
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
superpathway of glyoxylate cycle and fatty acid degradation 14 11 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
platensimycin biosynthesis 26 6 1