Experiment set3IT056 for Dyella japonica UNC79MFTsu3.2

Compare to:

LB with Sisomicin sulfate salt 0.016 mg/ml

Group: stress
Media: LB + Sisomicin sulfate salt (0.016 mg/ml)
Culturing: Dyella79_ML3, 24-well transparent microplate; Multitron, Aerobic, at 30 (C), shaken=700 rpm
Growth: about 4.5 generations
By: Adam on 17-May-17
Media components: 10 g/L Tryptone, 5 g/L Yeast Extract, 5 g/L Sodium Chloride
Growth plate: 1771 B1

Specific Phenotypes

For 37 genes in this experiment

For stress Sisomicin sulfate salt in Dyella japonica UNC79MFTsu3.2

For stress Sisomicin sulfate salt across organisms

SEED Subsystems

Subsystem #Specific
Multidrug Resistance Efflux Pumps 4
Multidrug efflux pump in Campylobacter jejuni (CmeABC operon) 3
Isoleucine degradation 2
Valine degradation 2
Acetyl-CoA fermentation to Butyrate 1
Butanol Biosynthesis 1
Carboxysome 1
Cyanate hydrolysis 1
Glutamine, Glutamate, Aspartate and Asparagine Biosynthesis 1
Glutathione-regulated potassium-efflux system and associated functions 1
Glutathione: Non-redox reactions 1
Glycerol and Glycerol-3-phosphate Uptake and Utilization 1
Heat shock dnaK gene cluster extended 1
Leucine Degradation and HMG-CoA Metabolism 1
Methylglyoxal Metabolism 1
Phosphate metabolism 1
Polyhydroxybutyrate metabolism 1
Potassium homeostasis 1
Proteasome bacterial 1
Proteolysis in bacteria, ATP-dependent 1
Threonine and Homoserine Biosynthesis 1
Ubiquinone Menaquinone-cytochrome c reductase complexes 1
cAMP signaling in bacteria 1
n-Phenylalkanoic acid degradation 1
tRNA processing 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
benzoyl-CoA biosynthesis 3 3 3
L-aspartate biosynthesis 1 1 1
3-(4-hydroxyphenyl)pyruvate biosynthesis 1 1 1
L-aspartate degradation I 1 1 1
oleate β-oxidation 35 32 22
glutaryl-CoA degradation 5 3 3
fatty acid β-oxidation II (plant peroxisome) 5 3 3
fatty acid β-oxidation I (generic) 7 6 4
2-methyl-branched fatty acid β-oxidation 14 9 8
valproate β-oxidation 9 5 5
pyruvate fermentation to hexanol (engineered) 11 7 6
CO2 fixation into oxaloacetate (anaplerotic) 2 2 1
malate/L-aspartate shuttle pathway 2 2 1
fatty acid salvage 6 5 3
L-isoleucine degradation I 6 4 3
pyruvate fermentation to butanol II (engineered) 6 4 3
propanoate fermentation to 2-methylbutanoate 6 3 3
pseudouridine degradation 2 1 1
atromentin biosynthesis 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
L-glutamate degradation II 2 1 1
L-tyrosine degradation II 2 1 1
L-tryptophan degradation IV (via indole-3-lactate) 2 1 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 5
pyruvate fermentation to butanoate 7 3 3
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 3
adipate degradation 5 4 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
adipate biosynthesis 5 3 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 3 2
4-hydroxybenzoate biosynthesis III (plants) 5 2 2
pyruvate fermentation to butanol I 8 3 3
L-phenylalanine biosynthesis I 3 3 1
2-oxoisovalerate decarboxylation to isobutanoyl-CoA 3 3 1
L-asparagine degradation III (mammalian) 3 3 1
ketolysis 3 3 1
methylglyoxal degradation VIII 3 2 1
polyhydroxybutanoate biosynthesis 3 2 1
L-tyrosine biosynthesis I 3 2 1
methylglyoxal degradation I 3 2 1
cyanate degradation 3 2 1
autoinducer CAI-1 biosynthesis 3 2 1
indole-3-acetate biosynthesis VI (bacteria) 3 2 1
methyl ketone biosynthesis (engineered) 6 3 2
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 4 3
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 3
L-tyrosine degradation IV (to 4-methylphenol) 3 1 1
sulfolactate degradation III 3 1 1
L-phenylalanine degradation II (anaerobic) 3 1 1
(R)-cysteate degradation 3 1 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 3
3-phenylpropanoate degradation 10 4 3
benzoyl-CoA degradation I (aerobic) 7 2 2
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 7 3
superpathway of L-aspartate and L-asparagine biosynthesis 4 3 1
L-phenylalanine degradation III 4 2 1
L-tyrosine degradation III 4 2 1
L-tryptophan degradation VIII (to tryptophol) 4 2 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
L-valine degradation I 8 3 2
L-glutamate degradation VII (to butanoate) 12 4 3
2-methylpropene degradation 8 2 2
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 3
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 4
phenylacetate degradation I (aerobic) 9 2 2
superpathway of glyoxylate cycle and fatty acid degradation 14 11 3
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 8 3
L-tyrosine degradation I 5 4 1
ketogenesis 5 4 1
L-tryptophan degradation III (eukaryotic) 15 10 3
trans-4-hydroxy-L-proline degradation I 5 3 1
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 2
pyruvate fermentation to acetone 5 2 1
superpathway of plastoquinol biosynthesis 5 2 1
isopropanol biosynthesis (engineered) 5 2 1
methyl tert-butyl ether degradation 10 3 2
androstenedione degradation I (aerobic) 25 6 5
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
L-tryptophan degradation XIII (reductive Stickland reaction) 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
L-phenylalanine degradation VI (reductive Stickland reaction) 5 1 1
4-hydroxybenzoate biosynthesis I (eukaryotes) 5 1 1
L-tyrosine degradation V (reductive Stickland reaction) 5 1 1
glycerol degradation to butanol 16 9 3
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 3
superpathway of phenylethylamine degradation 11 3 2
superpathway of testosterone and androsterone degradation 28 6 5
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 6 3
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 3
superpathway of L-threonine biosynthesis 6 6 1
TCA cycle VIII (Chlamydia) 6 5 1
6-gingerol analog biosynthesis (engineered) 6 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 7
toluene degradation VI (anaerobic) 18 3 3
superpathway of sulfolactate degradation 6 1 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
4-ethylphenol degradation (anaerobic) 6 1 1
coenzyme M biosynthesis II 6 1 1
jasmonic acid biosynthesis 19 4 3
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 2
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 7
androstenedione degradation II (anaerobic) 27 4 4
anaerobic energy metabolism (invertebrates, cytosol) 7 7 1
C4 photosynthetic carbon assimilation cycle, NADP-ME type 7 4 1
acetyl-CoA fermentation to butanoate 7 3 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 2
mevalonate pathway II (haloarchaea) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
Spodoptera littoralis pheromone biosynthesis 22 3 3
superpathway of methylglyoxal degradation 8 4 1
2-deoxy-D-ribose degradation II 8 2 1
mevalonate pathway IV (archaea) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 2
platensimycin biosynthesis 26 6 3
superpathway of aromatic amino acid biosynthesis 18 17 2
superpathway of L-methionine biosynthesis (transsulfuration) 9 7 1
1-butanol autotrophic biosynthesis (engineered) 27 18 3
L-phenylalanine degradation IV (mammalian, via side chain) 9 3 1
4-oxopentanoate degradation 9 3 1
superpathway of L-phenylalanine biosynthesis 10 10 1
superpathway of L-tyrosine biosynthesis 10 9 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 2 1
rosmarinic acid biosynthesis I 10 1 1
ethylmalonyl-CoA pathway 11 2 1
gallate degradation III (anaerobic) 11 2 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 2
(S)-reticuline biosynthesis I 11 1 1
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 11 1
indole-3-acetate biosynthesis II 12 3 1
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 1
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 1
superpathway of cholesterol degradation III (oxidase) 49 4 4
superpathway of L-isoleucine biosynthesis I 13 13 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 17 2
3-hydroxypropanoate cycle 13 8 1
glyoxylate assimilation 13 6 1
superpathway of rosmarinic acid biosynthesis 14 1 1
superpathway of anaerobic energy metabolism (invertebrates) 17 12 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 16 1
gluconeogenesis II (Methanobacterium thermoautotrophicum) 18 8 1
superpathway of the 3-hydroxypropanoate cycle 18 8 1
sitosterol degradation to androstenedione 18 1 1
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 20 3
aspartate superpathway 25 21 1
superpathway of ergosterol biosynthesis I 26 3 1
anaerobic aromatic compound degradation (Thauera aromatica) 27 1 1
superpathway of chorismate metabolism 59 38 2
superpathway of cholesterol biosynthesis 38 3 1
superpathway of L-lysine degradation 43 7 1