Culturing: psRCH2_ML7, 48 well microplate; Tecan Infinite F200, Aerobic, at 30 (C), shaken=orbital
| Pathway | #Steps | #Present | #Specific |
| L-glutamine biosynthesis I | 1 | 1 | 1 |
| L-cysteine degradation IV | 1 | 1 | 1 |
| pyrimidine nucleobases salvage I | 1 | 1 | 1 |
| L-alanine biosynthesis III | 1 | 1 | 1 |
| fatty acid β-oxidation III (unsaturated, odd number) | 1 | 1 | 1 |
| benzoyl-CoA biosynthesis | 3 | 3 | 2 |
| L-methionine degradation II | 3 | 2 | 2 |
| fatty acid β-oxidation IV (unsaturated, even number) | 5 | 4 | 3 |
| fatty acid β-oxidation I (generic) | 7 | 5 | 4 |
| pyrimidine nucleobases salvage II | 2 | 2 | 1 |
| arsenate detoxification III | 2 | 2 | 1 |
| superoxide radicals degradation | 2 | 2 | 1 |
| oleate β-oxidation (thioesterase-dependent, yeast) | 2 | 2 | 1 |
| ammonia assimilation cycle I | 2 | 2 | 1 |
| 4-aminobutanoate degradation III | 2 | 2 | 1 |
| palmitoleate biosynthesis III (cyanobacteria) | 2 | 1 | 1 |
| methanol oxidation to formaldehyde IV | 2 | 1 | 1 |
| cytidylyl molybdenum cofactor sulfurylation | 2 | 1 | 1 |
| ammonia assimilation cycle II | 2 | 1 | 1 |
| phospholipid remodeling (phosphatidate, yeast) | 2 | 1 | 1 |
| oleate β-oxidation | 35 | 30 | 16 |
| adipate degradation | 5 | 5 | 2 |
| adipate biosynthesis | 5 | 4 | 2 |
| fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) | 5 | 3 | 2 |
| fatty acid β-oxidation II (plant peroxisome) | 5 | 3 | 2 |
| glutaryl-CoA degradation | 5 | 3 | 2 |
| pyruvate fermentation to hexanol (engineered) | 11 | 7 | 4 |
| (8E,10E)-dodeca-8,10-dienol biosynthesis | 11 | 5 | 4 |
| 2-methyl-branched fatty acid β-oxidation | 14 | 10 | 5 |
| fatty acid salvage | 6 | 6 | 2 |
| ammonia assimilation cycle III | 3 | 3 | 1 |
| ethanol degradation IV | 3 | 3 | 1 |
| L-threonine degradation I | 6 | 5 | 2 |
| L-isoleucine degradation I | 6 | 5 | 2 |
| valproate β-oxidation | 9 | 7 | 3 |
| pyruvate fermentation to butanol II (engineered) | 6 | 4 | 2 |
| propanoate fermentation to 2-methylbutanoate | 6 | 4 | 2 |
| L-aspartate degradation II (aerobic) | 3 | 2 | 1 |
| L-aspartate degradation III (anaerobic) | 3 | 2 | 1 |
| superpathway of ammonia assimilation (plants) | 3 | 2 | 1 |
| oleate biosynthesis III (cyanobacteria) | 3 | 2 | 1 |
| methyl ketone biosynthesis (engineered) | 6 | 3 | 2 |
| purine deoxyribonucleosides degradation II | 3 | 1 | 1 |
| bis(guanylyl molybdopterin) cofactor sulfurylation | 3 | 1 | 1 |
| adenine and adenosine salvage V | 3 | 1 | 1 |
| oleate β-oxidation (reductase-dependent, yeast) | 3 | 1 | 1 |
| L-isoleucine biosynthesis I (from threonine) | 7 | 7 | 2 |
| thiazole component of thiamine diphosphate biosynthesis II | 7 | 5 | 2 |
| fatty acid β-oxidation VI (mammalian peroxisome) | 7 | 4 | 2 |
| pyruvate fermentation to butanoate | 7 | 3 | 2 |
| benzoyl-CoA degradation I (aerobic) | 7 | 3 | 2 |
| CDP-diacylglycerol biosynthesis I | 4 | 4 | 1 |
| superpathway of pyrimidine nucleobases salvage | 4 | 4 | 1 |
| superpathway of L-alanine biosynthesis | 4 | 4 | 1 |
| reactive oxygen species degradation | 4 | 4 | 1 |
| CDP-diacylglycerol biosynthesis II | 4 | 4 | 1 |
| L-valine degradation I | 8 | 6 | 2 |
| pyruvate fermentation to butanol I | 8 | 4 | 2 |
| arsenic detoxification (bacteria) | 4 | 2 | 1 |
| adenine and adenosine salvage III | 4 | 2 | 1 |
| tRNA-uridine 2-thiolation (mammalian mitochondria) | 4 | 1 | 1 |
| purine deoxyribonucleosides degradation I | 4 | 1 | 1 |
| oleate β-oxidation (isomerase-dependent, yeast) | 4 | 1 | 1 |
| tRNA-uridine 2-thiolation (yeast mitochondria) | 4 | 1 | 1 |
| superpathway of Clostridium acetobutylicum acidogenic fermentation | 9 | 5 | 2 |
| phenylacetate degradation I (aerobic) | 9 | 3 | 2 |
| benzoate biosynthesis I (CoA-dependent, β-oxidative) | 9 | 3 | 2 |
| (R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) | 5 | 4 | 1 |
| adenosine nucleotides degradation II | 5 | 4 | 1 |
| L-glutamate degradation V (via hydroxyglutarate) | 10 | 7 | 2 |
| CDP-diacylglycerol biosynthesis III | 5 | 3 | 1 |
| L-lysine degradation IV | 5 | 3 | 1 |
| 4-hydroxybenzoate biosynthesis III (plants) | 5 | 3 | 1 |
| phosphatidate biosynthesis (yeast) | 5 | 3 | 1 |
| 9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) | 10 | 4 | 2 |
| [2Fe-2S] iron-sulfur cluster biosynthesis | 10 | 4 | 2 |
| 3-phenylpropanoate degradation | 10 | 3 | 2 |
| benzoate biosynthesis III (CoA-dependent, non-β-oxidative) | 5 | 1 | 1 |
| tRNA-uridine 2-thiolation (thermophilic bacteria) | 5 | 1 | 1 |
| superpathway of thiamine diphosphate biosynthesis II | 11 | 9 | 2 |
| superpathway of phenylethylamine degradation | 11 | 4 | 2 |
| phosphatidylglycerol biosynthesis I | 6 | 6 | 1 |
| phosphatidylglycerol biosynthesis II | 6 | 6 | 1 |
| superpathway of phospholipid biosynthesis III (E. coli) | 12 | 10 | 2 |
| L-lysine degradation X | 6 | 5 | 1 |
| thiazole component of thiamine diphosphate biosynthesis I | 6 | 4 | 1 |
| molybdopterin biosynthesis | 6 | 4 | 1 |
| arsenate detoxification I | 6 | 3 | 1 |
| arsenic detoxification (plants) | 6 | 3 | 1 |
| 6-gingerol analog biosynthesis (engineered) | 6 | 2 | 1 |
| L-lysine degradation III | 6 | 2 | 1 |
| palmitoyl ethanolamide biosynthesis | 6 | 2 | 1 |
| superpathway of stearidonate biosynthesis (cyanobacteria) | 6 | 2 | 1 |
| L-glutamate degradation VII (to butanoate) | 12 | 3 | 2 |
| purine ribonucleosides degradation | 6 | 1 | 1 |
| superpathway of L-isoleucine biosynthesis I | 13 | 13 | 2 |
| superpathway of Clostridium acetobutylicum solventogenic fermentation | 13 | 6 | 2 |
| superpathway of glyoxylate cycle and fatty acid degradation | 14 | 11 | 2 |
| L-glutamate and L-glutamine biosynthesis | 7 | 5 | 1 |
| L-lysine degradation I | 7 | 4 | 1 |
| diacylglycerol and triacylglycerol biosynthesis | 7 | 3 | 1 |
| hypoglycin biosynthesis | 14 | 4 | 2 |
| superpathway of purine deoxyribonucleosides degradation | 7 | 2 | 1 |
| stigma estolide biosynthesis | 7 | 2 | 1 |
| Spodoptera littoralis pheromone biosynthesis | 22 | 3 | 3 |
| L-tryptophan degradation III (eukaryotic) | 15 | 3 | 2 |
| ubiquinol-8 biosynthesis (early decarboxylation) | 8 | 6 | 1 |
| glycerol degradation to butanol | 16 | 10 | 2 |
| crotonate fermentation (to acetate and cyclohexane carboxylate) | 16 | 4 | 2 |
| 2-methylpropene degradation | 8 | 2 | 1 |
| anandamide biosynthesis II | 8 | 2 | 1 |
| tRNA-uridine 2-thiolation (cytoplasmic) | 8 | 1 | 1 |
| superpathway of branched chain amino acid biosynthesis | 17 | 17 | 2 |
| superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation | 17 | 8 | 2 |
| benzoate fermentation (to acetate and cyclohexane carboxylate) | 17 | 4 | 2 |
| superpathway of L-threonine metabolism | 18 | 13 | 2 |
| 3-hydroxypropanoate/4-hydroxybutanate cycle | 18 | 9 | 2 |
| toluene degradation VI (anaerobic) | 18 | 4 | 2 |
| L-arginine biosynthesis II (acetyl cycle) | 10 | 10 | 1 |
| superpathway of thiamine diphosphate biosynthesis I | 10 | 8 | 1 |
| peptidoglycan recycling II | 10 | 7 | 1 |
| superpathway of pyrimidine ribonucleosides salvage | 10 | 6 | 1 |
| methyl tert-butyl ether degradation | 10 | 3 | 1 |
| purine nucleotides degradation II (aerobic) | 11 | 8 | 1 |
| tRNA-uridine 2-thiolation and selenation (bacteria) | 11 | 5 | 1 |
| gallate degradation III (anaerobic) | 11 | 5 | 1 |
| superpathway of ubiquinol-8 biosynthesis (early decarboxylation) | 12 | 10 | 1 |
| arsenic detoxification (yeast) | 12 | 4 | 1 |
| anandamide biosynthesis I | 12 | 3 | 1 |
| 10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) | 12 | 2 | 1 |
| 10-cis-heptadecenoyl-CoA degradation (yeast) | 12 | 2 | 1 |
| androstenedione degradation I (aerobic) | 25 | 6 | 2 |
| superpathway of cardiolipin biosynthesis (bacteria) | 13 | 9 | 1 |
| platensimycin biosynthesis | 26 | 6 | 2 |
| (4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) | 13 | 2 | 1 |
| 1-butanol autotrophic biosynthesis (engineered) | 27 | 19 | 2 |
| androstenedione degradation II (anaerobic) | 27 | 4 | 2 |
| peptidoglycan recycling I | 14 | 9 | 1 |
| superpathway of phospholipid biosynthesis II (plants) | 28 | 10 | 2 |
| superpathway of testosterone and androsterone degradation | 28 | 6 | 2 |
| superpathway of cholesterol degradation I (cholesterol oxidase) | 42 | 8 | 3 |
| docosahexaenoate biosynthesis III (6-desaturase, mammals) | 14 | 2 | 1 |
| superpathway of cholesterol degradation II (cholesterol dehydrogenase) | 47 | 9 | 3 |
| plasmalogen biosynthesis I (aerobic) | 16 | 1 | 1 |
| cholesterol degradation to androstenedione I (cholesterol oxidase) | 17 | 2 | 1 |
| cholesterol degradation to androstenedione II (cholesterol dehydrogenase) | 22 | 3 | 1 |
| superpathway of cholesterol degradation III (oxidase) | 49 | 5 | 2 |
| photosynthetic 3-hydroxybutanoate biosynthesis (engineered) | 26 | 19 | 1 |
| superpathway of L-lysine degradation | 43 | 11 | 1 |
| superpathway of chorismate metabolism | 59 | 44 | 1 |