Experiment set3H27 for Phaeobacter inhibens DSM 17395

Compare to:

L-Proline carbon source

Group: carbon source
Media: DinoMM_noCarbon + L-Proline (20 mM), pH=7
Culturing: Phaeo_ML1, 48 well microplate; Tecan Infinite F200, Aerobic, at 25 (C), shaken=orbital
By: Jordan on 8/5/2013
Media components: 20 g/L Sea salts, 0.3 g/L Ammonium Sulfate, 0.1 g/L Potassium phosphate monobasic, Wolfe's mineral mix (0.003 g/L Magnesium Sulfate Heptahydrate, 0.0015 g/L Nitrilotriacetic acid, 0.001 g/L Sodium Chloride, 0.0005 g/L Manganese (II) sulfate monohydrate, 0.0001 g/L Cobalt chloride hexahydrate, 0.0001 g/L Zinc sulfate heptahydrate, 0.0001 g/L Calcium chloride dihydrate, 0.0001 g/L Iron (II) sulfate heptahydrate, 2.5e-05 g/L Nickel (II) chloride hexahydrate, 2e-05 g/L Aluminum potassium sulfate dodecahydrate, 1e-05 g/L Copper (II) sulfate pentahydrate, 1e-05 g/L Boric Acid, 1e-05 g/L Sodium Molybdate Dihydrate, 0.0003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.05 mg/L Pyridoxine HCl, 0.025 mg/L 4-Aminobenzoic acid, 0.025 mg/L Lipoic acid, 0.025 mg/L Nicotinic Acid, 0.025 mg/L Riboflavin, 0.025 mg/L Thiamine HCl, 0.025 mg/L calcium pantothenate, 0.01 mg/L biotin, 0.01 mg/L Folic Acid, 0.0005 mg/L Cyanocobalamin)
Growth plate: 620 E7,E8

Specific Phenotypes

For 9 genes in this experiment

For carbon source L-Proline in Phaeobacter inhibens DSM 17395

For carbon source L-Proline across organisms

SEED Subsystems

Subsystem #Specific
ABC transporter tungstate (TC 3.A.1.6.2) 1
Calvin-Benson cycle 1
Entner-Doudoroff Pathway 1
Glycolysis and Gluconeogenesis 1
Maltose and Maltodextrin Utilization 1
Peptidoglycan Biosynthesis 1
Pyridoxin (Vitamin B6) Biosynthesis 1
Redox-dependent regulation of nucleus processes 1
Type IV pilus 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
pyridoxal 5'-phosphate biosynthesis I 7 6 1
peptidoglycan biosynthesis II (staphylococci) 17 12 2
peptidoglycan biosynthesis IV (Enterococcus faecium) 17 12 2
peptidoglycan biosynthesis V (β-lactam resistance) 17 11 2
Entner-Doudoroff pathway I 9 8 1
sucrose biosynthesis I (from photosynthesis) 9 7 1
glycolysis IV 10 7 1
glycolysis II (from fructose 6-phosphate) 11 9 1
glycolysis III (from glucose) 11 9 1
glycolysis VI (from fructose) 11 7 1
peptidoglycan biosynthesis I (meso-diaminopimelate containing) 12 11 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 1
homolactic fermentation 12 9 1
gluconeogenesis III 12 9 1
superpathway of pyridoxal 5'-phosphate biosynthesis and salvage 12 7 1
peptidoglycan maturation (meso-diaminopimelate containing) 12 3 1
gluconeogenesis I 13 12 1
glycolysis I (from glucose 6-phosphate) 13 10 1
Bifidobacterium shunt 15 12 1
peptidoglycan biosynthesis III (mycobacteria) 15 11 1
glycerol degradation to butanol 16 9 1
superpathway of glucose and xylose degradation 17 14 1
superpathway of glycolysis and the Entner-Doudoroff pathway 17 14 1
heterolactic fermentation 18 13 1
superpathway of hexitol degradation (bacteria) 18 11 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of anaerobic sucrose degradation 19 14 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 17 1
superpathway of N-acetylneuraminate degradation 22 15 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 20 1