Experiment set3H26 for Phaeobacter inhibens DSM 17395

Compare to:

Glycine carbon source

Group: carbon source
Media: DinoMM_noCarbon + Glycine (20 mM), pH=7
Culturing: Phaeo_ML1, 48 well microplate; Tecan Infinite F200, Aerobic, at 25 (C), shaken=orbital
By: Jordan on 8/5/2013
Media components: 20 g/L Sea salts, 0.3 g/L Ammonium Sulfate, 0.1 g/L Potassium phosphate monobasic, Wolfe's mineral mix (0.003 g/L Magnesium Sulfate Heptahydrate, 0.0015 g/L Nitrilotriacetic acid, 0.001 g/L Sodium Chloride, 0.0005 g/L Manganese (II) sulfate monohydrate, 0.0001 g/L Cobalt chloride hexahydrate, 0.0001 g/L Zinc sulfate heptahydrate, 0.0001 g/L Calcium chloride dihydrate, 0.0001 g/L Iron (II) sulfate heptahydrate, 2.5e-05 g/L Nickel (II) chloride hexahydrate, 2e-05 g/L Aluminum potassium sulfate dodecahydrate, 1e-05 g/L Copper (II) sulfate pentahydrate, 1e-05 g/L Boric Acid, 1e-05 g/L Sodium Molybdate Dihydrate, 0.0003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.05 mg/L Pyridoxine HCl, 0.025 mg/L 4-Aminobenzoic acid, 0.025 mg/L Lipoic acid, 0.025 mg/L Nicotinic Acid, 0.025 mg/L Riboflavin, 0.025 mg/L Thiamine HCl, 0.025 mg/L calcium pantothenate, 0.01 mg/L biotin, 0.01 mg/L Folic Acid, 0.0005 mg/L Cyanocobalamin)
Growth plate: 620 E5,E6

Specific Phenotypes

For 13 genes in this experiment

For carbon source Glycine in Phaeobacter inhibens DSM 17395

For carbon source Glycine across organisms

SEED Subsystems

Subsystem #Specific
Acetyl-CoA fermentation to Butyrate 1
Calvin-Benson cycle 1
Entner-Doudoroff Pathway 1
Glycolysis and Gluconeogenesis 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Isoleucine degradation 1
Lipopolysaccharide-related cluster in Alphaproteobacteria 1
Peptidoglycan Biosynthesis 1
Polyhydroxybutyrate metabolism 1
Proline, 4-hydroxyproline uptake and utilization 1
Pyridoxin (Vitamin B6) Biosynthesis 1
Redox-dependent regulation of nucleus processes 1
Valine degradation 1
YjeE 1
n-Phenylalkanoic acid degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
benzoyl-CoA biosynthesis 3 3 2
fatty acid β-oxidation I (generic) 7 5 3
adipate degradation 5 5 2
adipate biosynthesis 5 4 2
fatty acid β-oxidation II (plant peroxisome) 5 3 2
fatty acid β-oxidation IV (unsaturated, even number) 5 3 2
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 5 4
2-methyl-branched fatty acid β-oxidation 14 10 5
valproate β-oxidation 9 6 3
L-isoleucine degradation I 6 4 2
propanoate fermentation to 2-methylbutanoate 6 3 2
methyl ketone biosynthesis (engineered) 6 3 2
oleate β-oxidation 35 30 11
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 2
benzoyl-CoA degradation I (aerobic) 7 3 2
phenylacetate degradation I (aerobic) 9 6 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 2
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 1
glutaryl-CoA degradation 5 3 1
3-phenylpropanoate degradation 10 4 2
4-hydroxybenzoate biosynthesis III (plants) 5 2 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
pyruvate fermentation to hexanol (engineered) 11 7 2
superpathway of phenylethylamine degradation 11 6 2
fatty acid salvage 6 6 1
pyruvate fermentation to butanol II (engineered) 6 4 1
6-gingerol analog biosynthesis (engineered) 6 2 1
pyridoxal 5'-phosphate biosynthesis I 7 6 1
superpathway of glyoxylate cycle and fatty acid degradation 14 10 2
pyruvate fermentation to butanoate 7 3 1
Spodoptera littoralis pheromone biosynthesis 22 3 3
L-valine degradation I 8 5 1
glycerol degradation to butanol 16 9 2
pyruvate fermentation to butanol I 8 3 1
2-methylpropene degradation 8 2 1
Entner-Doudoroff pathway I 9 8 1
sucrose biosynthesis I (from photosynthesis) 9 7 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 1
glycolysis IV 10 7 1
L-glutamate degradation V (via hydroxyglutarate) 10 4 1
methyl tert-butyl ether degradation 10 2 1
glycolysis III (from glucose) 11 9 1
glycolysis II (from fructose 6-phosphate) 11 9 1
glycolysis VI (from fructose) 11 7 1
formaldehyde assimilation III (dihydroxyacetone cycle) 12 10 1
homolactic fermentation 12 9 1
gluconeogenesis III 12 9 1
superpathway of pyridoxal 5'-phosphate biosynthesis and salvage 12 7 1
L-glutamate degradation VII (to butanoate) 12 4 1
androstenedione degradation I (aerobic) 25 6 2
gluconeogenesis I 13 12 1
glycolysis I (from glucose 6-phosphate) 13 10 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 5 1
platensimycin biosynthesis 26 6 2
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 1
androstenedione degradation II (anaerobic) 27 4 2
superpathway of testosterone and androsterone degradation 28 6 2
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 3
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 1
Bifidobacterium shunt 15 12 1
L-tryptophan degradation III (eukaryotic) 15 5 1
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 9 3
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 4 1
superpathway of glycolysis and the Entner-Doudoroff pathway 17 14 1
superpathway of glucose and xylose degradation 17 14 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 4 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 1
heterolactic fermentation 18 13 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 11 1
superpathway of hexitol degradation (bacteria) 18 11 1
toluene degradation VI (anaerobic) 18 4 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 14 1
superpathway of anaerobic sucrose degradation 19 14 1
superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle 22 17 1
superpathway of N-acetylneuraminate degradation 22 15 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 3 1
superpathway of cholesterol degradation III (oxidase) 49 5 2
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 20 1
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 20 1
1-butanol autotrophic biosynthesis (engineered) 27 19 1