Experiment set3H20 for Shewanella oneidensis MR-1

Compare to:

Tween 20 carbon source replicate 2

Group: carbon source
Media: ShewMM_noCarbon + Tween 20 (0.5 vol%), pH=7
Culturing: MR1_ML3, tube, Aerobic, at 30 (C), shaken=200 rpm
Growth: about 4.0 generations
By: Adam on 8/18/2013
Media components: 1.5 g/L Ammonium chloride, 1.75 g/L Sodium Chloride, 0.61 g/L Magnesium chloride hexahydrate, 0.1 g/L Potassium Chloride, 0.6 g/L Sodium phosphate monobasic monohydrate, 30 mM PIPES sesquisodium salt, Wolfe's mineral mix (0.03 g/L Magnesium Sulfate Heptahydrate, 0.015 g/L Nitrilotriacetic acid, 0.01 g/L Sodium Chloride, 0.005 g/L Manganese (II) sulfate monohydrate, 0.001 g/L Cobalt chloride hexahydrate, 0.001 g/L Zinc sulfate heptahydrate, 0.001 g/L Calcium chloride dihydrate, 0.001 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L Nickel (II) chloride hexahydrate, 0.0002 g/L Aluminum potassium sulfate dodecahydrate, 0.0001 g/L Copper (II) sulfate pentahydrate, 0.0001 g/L Boric Acid, 0.0001 g/L Sodium Molybdate Dihydrate, 0.003 mg/L Sodium selenite pentahydrate), Wolfe's vitamin mix (0.1 mg/L Pyridoxine HCl, 0.05 mg/L 4-Aminobenzoic acid, 0.05 mg/L Lipoic acid, 0.05 mg/L Nicotinic Acid, 0.05 mg/L Riboflavin, 0.05 mg/L Thiamine HCl, 0.05 mg/L calcium pantothenate, 0.02 mg/L biotin, 0.02 mg/L Folic Acid, 0.001 mg/L Cyanocobalamin)

Specific Phenotypes

For 20 genes in this experiment

For carbon source Tween 20 in Shewanella oneidensis MR-1

For carbon source Tween 20 across organisms

SEED Subsystems

Subsystem #Specific
Serine-glyoxylate cycle 4
n-Phenylalkanoic acid degradation 3
Acetyl-CoA fermentation to Butyrate 2
Biotin biosynthesis 2
Butanol Biosynthesis 2
Isoleucine degradation 2
Photorespiration (oxidative C2 cycle) 2
Valine degradation 2
Allantoin Utilization 1
Anaerobic respiratory reductases 1
D-galactarate, D-glucarate and D-glycerate catabolism 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
Glycine Biosynthesis 1
Glycine and Serine Utilization 1
Isobutyryl-CoA to Propionyl-CoA Module 1
Methionine Biosynthesis 1
Polyhydroxybutyrate metabolism 1
Proteolysis in bacteria, ATP-dependent 1
Pyruvate Alanine Serine Interconversions 1
Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 1
Redox-dependent regulation of nucleus processes 1
Threonine degradation 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
benzoyl-CoA biosynthesis 3 3 3
glycine biosynthesis III 1 1 1
L-aspartate biosynthesis 1 1 1
L-aspartate degradation I 1 1 1
fatty acid β-oxidation III (unsaturated, odd number) 1 1 1
long-chain fatty acid activation 1 1 1
oleate β-oxidation 35 32 31
fatty acid β-oxidation I (generic) 7 6 6
fatty acid salvage 6 6 5
pyruvate fermentation to butanol II (engineered) 6 5 4
L-threonine degradation III (to methylglyoxal) 3 2 2
2-methyl-branched fatty acid β-oxidation 14 11 9
pyruvate fermentation to hexanol (engineered) 11 7 7
adipate degradation 5 4 3
fatty acid β-oxidation II (plant peroxisome) 5 3 3
fatty acid β-oxidation IV (unsaturated, even number) 5 3 3
glutaryl-CoA degradation 5 3 3
valproate β-oxidation 9 6 5
oleate β-oxidation (thioesterase-dependent, yeast) 2 2 1
L-threonine degradation II 2 2 1
glycolate and glyoxylate degradation II 2 2 1
malate/L-aspartate shuttle pathway 2 2 1
L-isoleucine degradation I 6 5 3
propanoate fermentation to 2-methylbutanoate 6 4 3
aminopropanol phosphate biosynthesis II 4 2 2
L-serine biosynthesis II 4 2 2
γ-linolenate biosynthesis II (animals) 2 1 1
L-glutamate degradation II 2 1 1
indole-3-acetate biosynthesis IV (bacteria) 2 1 1
2-O-α-mannosyl-D-glycerate degradation 2 1 1
L-homocysteine biosynthesis 2 1 1
linoleate biosynthesis II (animals) 2 1 1
acetoacetate degradation (to acetyl CoA) 2 1 1
indole-3-acetate biosynthesis III (bacteria) 2 1 1
acrylonitrile degradation I 2 1 1
(8E,10E)-dodeca-8,10-dienol biosynthesis 11 6 5
fatty acid β-oxidation VI (mammalian peroxisome) 7 3 3
pyruvate fermentation to butanoate 7 3 3
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered) 5 5 2
5,6-dehydrokavain biosynthesis (engineered) 10 6 4
adipate biosynthesis 5 3 2
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) 10 4 4
4-hydroxybenzoate biosynthesis III (plants) 5 2 2
fatty acid β-oxidation V (unsaturated, odd number, di-isomerase-dependent) 5 2 2
pyruvate fermentation to butanol I 8 4 3
2-deoxy-D-ribose degradation II 8 4 3
superpathway of glyoxylate cycle and fatty acid degradation 14 11 5
glyoxylate cycle 6 6 2
L-serine biosynthesis I 3 3 1
L-cysteine biosynthesis IX (Trichomonas vaginalis) 3 2 1
L-asparagine degradation III (mammalian) 3 2 1
ketolysis 3 2 1
polyhydroxybutanoate biosynthesis 3 2 1
superpathway of Clostridium acetobutylicum acidogenic fermentation 9 5 3
methyl ketone biosynthesis (engineered) 6 3 2
3-methyl-branched fatty acid α-oxidation 6 3 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 3 3
6-gingerol analog biosynthesis (engineered) 6 2 2
superpathway of L-cysteine biosynthesis (fungi) 6 2 2
oleate biosynthesis I (plants) 3 1 1
sulfolactate degradation III 3 1 1
alkane biosynthesis II 3 1 1
L-arginine degradation X (arginine monooxygenase pathway) 3 1 1
superpathway of acrylonitrile degradation 3 1 1
(R)-cysteate degradation 3 1 1
oleate β-oxidation (reductase-dependent, yeast) 3 1 1
L-glutamate degradation V (via hydroxyglutarate) 10 5 3
3-phenylpropanoate degradation 10 4 3
superpathway of glycol metabolism and degradation 7 5 2
benzoyl-CoA degradation I (aerobic) 7 2 2
superpathway of L-serine and glycine biosynthesis I 4 4 1
L-valine degradation I 8 7 2
glycolate and glyoxylate degradation I 4 3 1
chitin deacetylation 4 3 1
phytol degradation 4 3 1
L-methionine biosynthesis III 4 3 1
superpathway of L-aspartate and L-asparagine biosynthesis 4 3 1
(2S)-ethylmalonyl-CoA biosynthesis 4 2 1
D-glucarate degradation I 4 2 1
phosphatidylcholine acyl editing 4 2 1
D-galactarate degradation I 4 2 1
L-glutamate degradation VII (to butanoate) 12 4 3
2-methylpropene degradation 8 2 2
homocysteine and cysteine interconversion 4 1 1
oleate β-oxidation (isomerase-dependent, yeast) 4 1 1
wax esters biosynthesis II 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
formaldehyde assimilation I (serine pathway) 13 8 3
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 6 3
superpathway of L-methionine biosynthesis (transsulfuration) 9 8 2
photorespiration I 9 7 2
photorespiration III 9 7 2
sporopollenin precursors biosynthesis 18 5 4
phenylacetate degradation I (aerobic) 9 2 2
photorespiration II 10 8 2
L-methionine biosynthesis I 5 4 1
superpathway of sulfur amino acid biosynthesis (Saccharomyces cerevisiae) 10 6 2
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
superpathway of D-glucarate and D-galactarate degradation 5 2 1
octane oxidation 5 2 1
ketogenesis 5 2 1
androstenedione degradation I (aerobic) 25 6 5
L-tryptophan degradation III (eukaryotic) 15 3 3
methyl tert-butyl ether degradation 10 2 2
isopropanol biosynthesis (engineered) 5 1 1
S-methyl-5-thio-α-D-ribose 1-phosphate degradation III 5 1 1
S-methyl-5-thio-α-D-ribose 1-phosphate degradation II 5 1 1
benzoate biosynthesis III (CoA-dependent, non-β-oxidative) 5 1 1
pyruvate fermentation to acetone 5 1 1
fatty acid β-oxidation VII (yeast peroxisome) 5 1 1
ethylbenzene degradation (anaerobic) 5 1 1
glycerol degradation to butanol 16 10 3
crotonate fermentation (to acetate and cyclohexane carboxylate) 16 3 3
superpathway of phenylethylamine degradation 11 3 2
superpathway of testosterone and androsterone degradation 28 6 5
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 8 3
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 3 3
superpathway of L-threonine biosynthesis 6 6 1
superpathway of L-methionine biosynthesis (by sulfhydrylation) 12 11 2
superpathway of glyoxylate bypass and TCA 12 10 2
TCA cycle VIII (Chlamydia) 6 5 1
stearate biosynthesis II (bacteria and plants) 6 5 1
L-methionine biosynthesis II 6 5 1
stearate biosynthesis IV 6 4 1
3-hydroxypropanoate/4-hydroxybutanate cycle 18 7 3
superpathway of sulfolactate degradation 6 2 1
superpathway of cholesterol degradation I (cholesterol oxidase) 42 8 7
toluene degradation VI (anaerobic) 18 3 3
10-cis-heptadecenoyl-CoA degradation (yeast) 12 2 2
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) 12 2 2
stearate biosynthesis I (animals) 6 1 1
methylthiopropanoate degradation I (cleavage) 6 1 1
coenzyme M biosynthesis II 6 1 1
4-ethylphenol degradation (anaerobic) 6 1 1
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) 6 1 1
jasmonic acid biosynthesis 19 4 3
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase) 13 2 2
superpathway of cholesterol degradation II (cholesterol dehydrogenase) 47 8 7
1-butanol autotrophic biosynthesis (engineered) 27 21 4
androstenedione degradation II (anaerobic) 27 4 4
anaerobic energy metabolism (invertebrates, cytosol) 7 5 1
acetyl-CoA fermentation to butanoate 7 4 1
ceramide degradation by α-oxidation 7 2 1
docosahexaenoate biosynthesis III (6-desaturase, mammals) 14 2 2
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
mevalonate pathway II (haloarchaea) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
mevalonate pathway I (eukaryotes and bacteria) 7 1 1
D-xylose degradation IV 7 1 1
Spodoptera littoralis pheromone biosynthesis 22 4 3
superpathway of L-homoserine and L-methionine biosynthesis 8 7 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
L-arabinose degradation IV 8 2 1
superpathway of dimethylsulfoniopropanoate degradation 8 1 1
mevalonate pathway IV (archaea) 8 1 1
isoprene biosynthesis II (engineered) 8 1 1
mevalonate pathway III (Thermoplasma) 8 1 1
cholesterol degradation to androstenedione I (cholesterol oxidase) 17 2 2
platensimycin biosynthesis 26 6 3
superpathway of sulfate assimilation and cysteine biosynthesis 9 9 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis I 18 17 2
superpathway of S-adenosyl-L-methionine biosynthesis 9 8 1
superpathway of L-threonine metabolism 18 15 2
Entner-Doudoroff pathway II (non-phosphorylative) 9 5 1
4-oxopentanoate degradation 9 2 1
superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 10 4 1
L-lysine fermentation to acetate and butanoate 10 3 1
suberin monomers biosynthesis 20 3 2
superpathway of fatty acid biosynthesis II (plant) 43 37 4
C4 photosynthetic carbon assimilation cycle, NAD-ME type 11 8 1
gallate degradation III (anaerobic) 11 3 1
ethylmalonyl-CoA pathway 11 2 1
cholesterol degradation to androstenedione II (cholesterol dehydrogenase) 22 2 2
indole-3-acetate biosynthesis II 12 3 1
superpathway of cholesterol degradation III (oxidase) 49 4 4
aspartate superpathway 25 23 2
superpathway of L-isoleucine biosynthesis I 13 13 1
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass 26 22 2
photosynthetic 3-hydroxybutanoate biosynthesis (engineered) 26 21 2
C4 photosynthetic carbon assimilation cycle, PEPCK type 14 9 1
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered) 14 1 1
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II 15 13 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 2
cutin biosynthesis 16 2 1
superpathway of anaerobic energy metabolism (invertebrates) 17 10 1
sitosterol degradation to androstenedione 18 1 1
superpathway of ergosterol biosynthesis I 26 3 1
superpathway of fatty acids biosynthesis (E. coli) 53 48 2
Methanobacterium thermoautotrophicum biosynthetic metabolism 56 22 2
palmitate biosynthesis III 29 21 1
superpathway of microbial D-galacturonate and D-glucuronate degradation 31 6 1
superpathway of cholesterol biosynthesis 38 3 1
superpathway of pentose and pentitol degradation 42 4 1
superpathway of L-lysine degradation 43 8 1