Experiment set2S423 for Rhodopseudomonas palustris CGA009

Compare to:

Sodium 4-Hydroxybenzoate carbon source

Group: carbon source
Media: PM + Sodium 4-Hydroxybenzoate (5.7 mM) + Sodium bicarbonate (10 mM) + Light intensity (30 µmol photons/m2/s from a 60-W incandescent light bulb)
Culturing: RPal_CGA009_ML8, tube, Anaerobic, at 30 (C)
By: Rpal_Fixen on 9/6/24
Media components: 12.5 mM Disodium phosphate, 12.5 mM Potassium phosphate monobasic, 1 g/L Ammonium Sulfate, 0.1 mM Sodium thiosulfate pentahydrate, 0.002 g/L 4-Aminobenzoic acid, UW concentrated base (0.02 g/L Nitrilotriacetic acid, 0.0289 g/L Magnesium sulfate, 0.00667 g/L Calcium chloride dihydrate, 1.85e-05 g/L ammonium molybdate tetrahydrate, 0.000698 g/L Iron (II) sulfate heptahydrate, 0.00025 g/L EDTA, 0.001095 g/L Zinc sulfate heptahydrate, 0.000154 g/L Manganese (II) sulfate monohydrate, 3.92e-05 g/L Copper (II) sulfate pentahydrate, 2.5e-05 g/L Cobalt(II) nitrate hexahydrate, 1.77e-05 g/L sodium tetraborate decahydrate)

Specific Phenotypes

For 26 genes in this experiment

For carbon source Sodium 4-Hydroxybenzoate in Rhodopseudomonas palustris CGA009

For carbon source Sodium 4-Hydroxybenzoate across organisms

SEED Subsystems

Subsystem #Specific
Benzoate transport and degradation cluster 3
Sulfur oxidation 3
Oxidative stress 2
Biogenesis of c-type cytochromes 1
Experimental tye 1
Fatty Acid Biosynthesis FASII 1
Fermentations: Mixed acid 1
Glycerolipid and Glycerophospholipid Metabolism in Bacteria 1
HMG CoA Synthesis 1
Leucine Degradation and HMG-CoA Metabolism 1
Periplasmic disulfide interchange 1
Protein chaperones 1
Purine Utilization 1
mycolic acid synthesis 1

Metabolic Maps

Color code by fitness: see overview map or list of maps.

Maps containing gene(s) with specific phenotypes:

MetaCyc Pathways

Pathways that contain genes with specific phenotypes:

Pathway #Steps #Present #Specific
L-glutamate biosynthesis I 2 2 2
sulfide oxidation II (flavocytochrome c) 1 1 1
L-glutamine degradation II 1 1 1
acetaldehyde biosynthesis I 1 1 1
L-glutamine degradation I 1 1 1
long-chain fatty acid activation 1 1 1
benzoate degradation II (aerobic and anaerobic) 1 1 1
ammonia assimilation cycle III 3 3 2
phytol degradation 4 3 2
phenol degradation II (anaerobic) 4 2 2
γ-linolenate biosynthesis II (animals) 2 1 1
linoleate biosynthesis II (animals) 2 1 1
ethanol degradation I 2 1 1
pyruvate fermentation to ethanol II 2 1 1
adenosine nucleotides degradation II 5 3 2
ethanol degradation II 3 3 1
stearate biosynthesis II (bacteria and plants) 6 5 2
4-coumarate degradation (anaerobic) 6 5 2
stearate biosynthesis IV 6 4 2
L-valine degradation II 3 2 1
L-leucine degradation III 3 2 1
L-isoleucine degradation II 3 2 1
3-methyl-branched fatty acid α-oxidation 6 3 2
L-methionine degradation III 3 1 1
pyruvate fermentation to ethanol III 3 1 1
pyruvate fermentation to ethanol I 3 1 1
oleate biosynthesis I (plants) 3 1 1
alkane biosynthesis II 3 1 1
palmitate biosynthesis II (type II fatty acid synthase) 31 29 9
L-glutamate and L-glutamine biosynthesis 7 5 2
superpathway of fatty acid biosynthesis II (plant) 43 38 12
palmitate biosynthesis III 29 28 8
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast) 12 12 3
gondoate biosynthesis (anaerobic) 4 4 1
L-asparagine biosynthesis III (tRNA-dependent) 4 4 1
inosine 5'-phosphate degradation 4 3 1
L-phenylalanine degradation III 4 3 1
guanosine nucleotides degradation III 4 3 1
glutaminyl-tRNAgln biosynthesis via transamidation 4 3 1
guanosine nucleotides degradation II 4 3 1
adenosine nucleotides degradation I 8 5 2
salidroside biosynthesis 4 2 1
L-tyrosine degradation III 4 2 1
guanosine nucleotides degradation I 4 2 1
phosphatidylcholine acyl editing 4 1 1
cytidine-5'-diphosphate-glycerol biosynthesis 4 1 1
long chain fatty acid ester synthesis (engineered) 4 1 1
wax esters biosynthesis II 4 1 1
superpathway of fatty acids biosynthesis (E. coli) 53 49 13
tetradecanoate biosynthesis (mitochondria) 25 23 6
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 9 8 2
benzoyl-CoA degradation III (anaerobic) 9 7 2
sporopollenin precursors biosynthesis 18 4 4
oleate biosynthesis IV (anaerobic) 14 13 3
fatty acid elongation -- saturated 5 5 1
chorismate biosynthesis from 3-dehydroquinate 5 5 1
superpathway of unsaturated fatty acids biosynthesis (E. coli) 20 18 4
cis-vaccenate biosynthesis 5 4 1
8-amino-7-oxononanoate biosynthesis IV 5 4 1
pyruvate fermentation to isobutanol (engineered) 5 4 1
ethanolamine utilization 5 4 1
acetylene degradation (anaerobic) 5 3 1
(S)-propane-1,2-diol degradation 5 3 1
sphingosine and sphingosine-1-phosphate metabolism 10 4 2
octane oxidation 5 2 1
phenylethanol biosynthesis 5 2 1
cis-zeatin biosynthesis 5 1 1
8-amino-7-oxononanoate biosynthesis I 11 9 2
purine nucleotides degradation II (aerobic) 11 7 2
odd iso-branched-chain fatty acid biosynthesis 34 30 6
even iso-branched-chain fatty acid biosynthesis 34 30 6
anteiso-branched-chain fatty acid biosynthesis 34 30 6
(5Z)-dodecenoate biosynthesis I 6 6 1
fatty acid salvage 6 6 1
(5Z)-dodecenoate biosynthesis II 6 5 1
purine nucleobases degradation II (anaerobic) 24 15 4
purine nucleotides degradation I (plants) 12 7 2
6-gingerol analog biosynthesis (engineered) 6 3 1
superpathway of guanosine nucleotides degradation (plants) 6 3 1
4-ethylphenol degradation (anaerobic) 6 3 1
petroselinate biosynthesis 6 2 1
stearate biosynthesis I (animals) 6 1 1
noradrenaline and adrenaline degradation 13 8 2
anaerobic aromatic compound degradation (Thauera aromatica) 27 8 4
streptorubin B biosynthesis 34 20 5
chorismate biosynthesis I 7 7 1
3-methylbutanol biosynthesis (engineered) 7 6 1
serotonin degradation 7 4 1
ureide biosynthesis 7 3 1
benzoyl-CoA degradation II (anaerobic) 7 2 1
ceramide degradation by α-oxidation 7 2 1
icosapentaenoate biosynthesis III (8-desaturase, mammals) 7 1 1
capsaicin biosynthesis 7 1 1
caffeine degradation III (bacteria, via demethylation) 7 1 1
icosapentaenoate biosynthesis II (6-desaturase, mammals) 7 1 1
arachidonate biosynthesis III (6-desaturase, mammals) 7 1 1
biotin biosynthesis I 15 13 2
superpathway of fatty acid biosynthesis I (E. coli) 16 16 2
L-citrulline biosynthesis 8 7 1
butanol and isobutanol biosynthesis (engineered) 8 3 1
ceramide and sphingolipid recycling and degradation (yeast) 16 4 2
2-deoxy-D-ribose degradation II 8 2 1
2-allylmalonyl-CoA biosynthesis 8 2 1
benzoate fermentation (to acetate and cyclohexane carboxylate) 17 7 2
superpathway of purines degradation in plants 18 8 2
benzoate biosynthesis I (CoA-dependent, β-oxidative) 9 4 1
superpathway of fermentation (Chlamydomonas reinhardtii) 9 4 1
theophylline degradation 9 1 1
superpathway of L-tyrosine biosynthesis 10 10 1
superpathway of L-phenylalanine biosynthesis 10 10 1
suberin monomers biosynthesis 20 3 2
caffeine degradation IV (bacteria, via demethylation and oxidation) 10 1 1
superpathway of L-citrulline metabolism 12 9 1
chorismate biosynthesis II (archaea) 12 8 1
superpathway of L-tryptophan biosynthesis 13 13 1
superpathway of Clostridium acetobutylicum solventogenic fermentation 13 4 1
L-tryptophan degradation V (side chain pathway) 13 1 1
mixed acid fermentation 16 11 1
cutin biosynthesis 16 1 1
superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation 17 7 1
superpathway of aromatic amino acid biosynthesis 18 18 1
heterolactic fermentation 18 11 1
toluene degradation VI (anaerobic) 18 5 1
superpathway of anaerobic sucrose degradation 19 14 1
hexitol fermentation to lactate, formate, ethanol and acetate 19 12 1
superpathway of N-acetylneuraminate degradation 22 12 1
oleate β-oxidation 35 28 1
mycolate biosynthesis 205 26 5
superpathway of mycolate biosynthesis 239 27 5
superpathway of chorismate metabolism 59 40 1